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Spin–orbit coupling in molecules: chemistry beyond the

adiabatic approximation
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An extensive introduction to spin–orbit coupling (SOC) is presented, starting
from a discussion of the phenomenological operators and general chemical
importance of SOC to studies of chemical reactions. Quantitative SOC operators
are discussed, and the symmetry properties of the SOCHamiltonian important for
understanding the general features of SOC are summarized. Comparison of the
one- and two-electron contributions to SOC is given, followed by a discussion of
commonly used approximations for the two-electron part. Applications of SOC to
studies using effective and model core potentials have been analysed. The
theoretical discussion is illustrated with numerous practical examples, including
diatomic molecules (with an emphasis on hydrides) and some examples for
polyatomic molecules. The fine structure of the SOC interaction (vibrational
dependence) for some diatomic molecules has been elucidated.
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1. Introduction

The phenomenon of spin–orbit coupling (SOC) arises from the interaction of
the intrinsic magnetic moment of an electron with its orbital angular momentum.
Every chemist is familiar with the splitting of the sodium D line into two, which
originates from the valence electron in an excited p orbital, where the excited p
electron with orbital angular momentum l¼ 1 and spin angular momentum s¼ 1/2
couples these two to a total angular momentum of j¼ 3/2 or j¼ 1/2. The two lines
in Na are separated by 17 cm�1, so even a crude instrument is capable of detecting
the effect of SOC.

A recent review of SOC by Marian (2001) presents a good summary of the
physics of the interaction as well as various methods for its computation. The present
review focuses on our own work involving the Breit–Pauli spin–orbit (SO)
Hamiltonian, HSO. Langhoff and Kern (1977) present an overview of the derivation
of this operator, the spin–spin operator and other terms appearing as a result of
Pauli’s transformation of the Dirac equation in their review of molecular fine
structure. Pyykkö (1978) and Balasubramanian (1997) give similar equations relating
HSO to other relativistic effects. References to alternatives to the Breit–Pauli SO
operator included below are intended only as a brief summary and are typically
limited to the most recent papers. Any reader with a greater interest in techniques for
computing this property may find additional details in Marian’s excellent review
(2001) or in Marian (1997).

Hess et al. (1995) also discuss computational methods for the SO effect and give
numerous numerical results. An earlier review (Yarkony 1992) focused on the
perturbative use of the Breit–Pauli SO operator for light elements. A review of the
use of effective core potential (ECP) operators for SOC exists (Ermler et al. 1988), as
well as a monograph concerned with SO effects in atoms and diatoms (Richards et al.
1981). Ågren et al. (1996) review the computation of the influence of SOC on spectral
properties.

In lighter elements, where the SOC is weaker than the ordinary electron repulsion
terms, Russell–Saunders coupling applies. Conversely j–j coupling is appropriate
for the heaviest elements. If we consider atoms, this means that lighter elements
retain L and S as approximate quantum numbers, each formed from the separate
vector sums of li and si for each individual electron, with the quantized total angular
momentum J being the result of the vector sum, J ¼ Lþ S. A typical example is
provided by the group 14 s2p2 elements. The lowest energy 3P term of this
configuration splits into three different J levels, 3P0,

3P1 and 3P2, spaced 43 cm�1

apart for C and 223 cm�1 for Si, increasing to 10650 cm�1 for Pb. For Pb, these three
J levels remain grouped together as the lowest three levels, but their separation is a
significant fraction of the excitation energy to the next term, 1D2, at 21 457 cm

�1.
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Thus, while it may make qualitative sense to retain the L–S notation 3P for Pb,
it is clear that its SOC is quite large. In the heavy atom limit, it is more accurate to
couple liþ si for each electron to ji and then to construct many-electron states by
coupling the ji to obtain J. This is called the j–j coupling limit and is appropriate in
the lower reaches of the periodic table. Tables of atomic spectra (Moore 1949, 1952,
1958) may not even assign 2Sþ1LJ labels giving approximate L and S values for sixth-
row atoms, in favour of listing only the precise J quantum number. For example, the
experimental J¼ 2, 775.9 cm�1 level of Pt is now known (Dyall 1993a) to consist of
40% 3D2 (d

9s1), 38% 1D2 (d
9s1) and 16% 1D2 (d

8) character and therefore cannot be
regarded as either singlet or triplet.

Let us consider some additional examples of the importance of SOC from a
chemical viewpoint. The great increase in strength of the SOC as we descend through
the periodic table has implications for whether or not we try to include it in
computations and, if so, by what means.

For the most part, SOC is simply ignored for light elements. This is possible
because SOC in general is smaller for lighter elements. It is also common for
molecules containing light elements to be very well described by singlet, single-
configuration wavefunctions, for which symmetry forces SOC to be zero to first
order as explained in detail below. However, if chemical reactions involving atoms or
other open-shell species are considered then SOC cannot be ignored if accuracy on
the order of 1 kcalmol�1 is sought after. Even for an atom as light as fluorine, the SO
splitting of the ground state is 404.1 cm�1 (Moore 1949), and thus ignoring SOC
would result in an error of 0.38 kcalmol�1 (2P level splits into 2P3/2 and

2P1/2). It is
clear that, in organic systems, SOC is a primary decay process for metastable triplet
states, through intersystem crossings (ISCs).

Organic photochemistry (Salem and Rowland 1972, Robb et al. 2000) often
involves metastable triplet structures, whose only decay mechanisms are both spin
forbidden: phosphorescence or non-radiative ISC. ISC rates are highest along the
seam of intersection of two potential energy surfaces with different spin multi-
plicities, with dynamical factors favouring ISC events at the minimum energy
crossing (MEX) points (Yarkony 1990). The MEX is the lowest energy point on
such a seam, and it serves in some sense as the ‘transition state’ for ISC. Automated
procedures for locating MEX points exist (e.g. Farazdel and Dupuis 1991), and
models such as Landau–Zener (Landau 1932, Zener 1932, Nakamura 1987) may be
used to compute rates. More sophisticated treatments of ISC rates include the use of
Fermi’s golden rule or non-adiabatic Rice–Ramsperger–Kassel–Marans (RRKM)
calculations, as illustrated by a study of the T1 decay rate in norbornadiene (Harvey
et al. 2000).

Other organic applications are the stereochemical control exerted by ISC on
reactions in Paterno–Buchi radicals (Kutateladze 2001) and inclusion of SO as well
as spin–spin coupling effects on the lifetimes of triplet states of m-xylylene (Havlas
and Michl 1999) and ISC lifetimes in cyclic a,b-enones (Garcia-Exposito et al. 2001).
There is significant interest in general in the phenomenon known as the heavy atom
effect that is the perturbation of SOC in a system due to a heavy atom. This
phenomenon manifests itself as the change of lifetimes and reaction rates due to
SOC. The effect is classified as external when the heavy atom is not chemically bound
to the system, such as solute–solvent types of interactions, pioneered by the work of
Kasha (1952), and some more recent work includes the theory of SOC of alkali and
noble metals in rare gas matrices due to Pellow and Vala (1989) and a study of CAr
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by Sohlberg and Yarkony (1999). The other type is internal, when a heavy atom
resides in a molecule, first theoretically studied by McClure (1949), and more recent
work includes the study of the phosphorescence rate in 9,10-anthraquinone
haloderivatives by Korol’kova et al. (1999) and the study of the inverse heavy atom
effect in HCCH2Br by Havlas and Michl (2002), to name just a few.

Second-row examples are not limited to organic compounds. For instance, the
full spectrum of spin-forbidden transitions in O2 has been obtained (Klotz and
Peyerimhoff 1986). Inclusion of SOC produces better agreement with experimental
intensity patterns in the extensively studied molecular beam reaction FþH2

(Aquilanti et al. 2002). Typically, SOCs are a few tens of cm�1 for molecules formed
from second-row elements, and perturbative treatments are clearly appropriate. In
addition, very accurate experiments on small molecules and molecular ions have
been performed (e.g. Fedorov et al. 1999) that require computation of SOC for an
adequate understanding of the spectroscopy. Light atom examples are not limited to
organic photochemistry but also included detailed spectroscopic measurements.

For intermediate weight main group elements, SO interactions grow to the order
of hundreds to a few thousand cm�1 and of course are easily observed spectro-
scopically. One example of this is the agreement found between experimental
measurements and Fermi’s golden rule lifetimes in the predissociation of A 3� PH
by a repulsive 5�� state (Fitzpatrick et al. 2002). Another example is the
computation of lifetimes in excited states of TeF (Rai et al. 2001). The energy
contribution from SOC is large enough that it must be included in model
thermochemistries such as the G2 theory for Ga–Br (Duke 2001), and experimental
atomic SOC values are used in the follow-on G3 method (Curtiss et al. 1998).
Experiments show that the Cl* 2P1/2 level has a large non-adiabatic reactivity in
ClþH2 dynamics (Hanf et al. 2001, Dong et al. 2001). A Rosen–Zener–Demkov
model used for the study of photodissociation of Cl2 reproduces the experimental
branching ratio for 2P3/2–

2P1/2 atoms (Asano and Yabushita 2001). Spectra of SrSH
reveal a second-order SOC through an effective� state in this strongly bent molecule
(Halfen et al. 2001). Finally, inclusion of SOC is found to improve agreement with
experimental nuclear magnetic resonance (NMR) shifts in SnX4, X¼Cl, Br, I, via its
effect on the Fermi contact term (Kaneko et al. 1996).

Transition metal compounds have a rich set of electronic states owing to unfilled
d shells, and therefore SO effects are commonplace. SOC perturbs the potential
curves of several states in FeC and has been found to be bond length dependent in
two of these (Itono et al. 2001). A key step in H2 dissociation on Pd4 clusters is a
triplet–singlet transition induced by SOC (German et al. 2001). Photoemission
spectra in the insulator Ca2RuO4 show there is a strong SOC in the bands arising
from the Ru 4d t2g orbitals (Mizokawa et al. 2001). The paradoxical observation of a
decrease in reaction rate with increased collision energy between FeOþ and H2 has
been explained by invoking an ISC between a sextet and quartet state, with an
increased probability when high kinetic energy does not carry the reactants too
rapidly past this region of the surface (Danovich and Shaik 1997).

It is of course simple to find additional examples in very heavy elements.
Therefore we will give only four examples in addition to the Pt atom already
mentioned. Probably the second most familiar manifestation of SOC in chemistry,
after the Na D line mentioned above, is the mercury sensitization technique. This is
due to the absorption at 253.7 nm by the ground state 1S0 6s

2 atom to the 3P1 6s
16p1

level, whose �J¼ 1 transition is dipole allowed. The ‘triplet’ character of this excited
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state can be transferred to organic compounds via collisions, producing metastable
triplet species whose direct optical excitation would have had vanishing intensity.
SO effects are found to be influential on both bond distances and dissociation
energies in the sixth-row hydrides AH, A¼Tl–At, and are very large in their
hypothetical seventh-row analogues (Han et al. 2000). Splittings in the þ3 lanthanide
ions have been compared with experiment (Sanoyama et al. 1998). The transuranic
compound AmF4 has many levels arising from a 5f5 atomic configuration, which can
be modelled to an accuracy of about 40 cm�1 up to 19 000 cm�1 (Liu et al. 1994).

Entering the topic ‘spin–orbit coupling’ into Chemical Abstracts in 2002 pro-
duces almost 10 000 references, so clearly the examples shown above only scratch the
surface of work in this area. An additional list of examples from light to heavy
elements has been given elsewhere (Koseki et al. 2001a). Danovich et al. (1998) also
give a large number of references to important SOC effects in chemistry. The
increasing interest in SO effects in chemistry is responsible for development of
methods for the computation of this property as well as their use in chemical
problems. This review is therefore divided into two main parts, one concerned with
theoretical methods for the treatment of SOC and one on applications. The emphasis
is on our own work in this field. Although the theoretical section contains some
review of alternative methods, this review is not intended to be exhaustive. Some
concluding remarks end the review.

2. Theoretical aspects of spin–orbit coupling

2.1. A survey of methods for the computation of spin–orbit coupling
Having established that SOC is relevant in chemistry, even for light elements,

we now turn to methods for its calculation. Since j–j coupling is appropriate in
the heavy atom limit, it is clear that use of the four-component Dirac equation
is ideal (Quinney et al. 1999). The Dirac equation for a hydrogenic atom yields
four component spinors, with j¼ lþ s¼ l� 1/2 distinguishing between the two
(a and b) ‘large’ components and the two (a and b) ‘small’ components. One
four-component equation, in other words, is a set of four coupled one-component
equations, and a and b spins are explicitly coupled, and thus the one-electron
Dirac equation already includes the SOC effect. Addition of the 1/rij electron
repulsion terms gives the Dirac–Coulomb equation, to which one may add the
Breit interactions (Breit 1929) or the Gaunt approximation to these (Gaunt 1929),
encompassing the two-electron part of SOC. Programs capable of molecular four-
component Dirac–Coulomb or Dirac–Coulomb–Breit calculations are becoming
increasingly common, and recently Visscher (2002) has given a summary of the
progress and prospects for these. Recent implementations of four-component
calculations include Dirac–Hartree–Fock (Visscher et al. 1989, Matsuoka 1992,
Dyall 1993b, Saue et al. 1997, Pernpointner et al. 2000, Grant and Quiney 2000, de
Jong and Visscher 2002, Yanai et al. 2002, Nakajima et al. 2002), as well as
extensions to correlation methods including density functional theory (Liu et al.
1997, Yanai et al. 2001, Saue and Helgaker 2002), perturbation theory (Dyall 1994,
Laerdahl et al. 1997, Laerdahl et al. 1998), multiconfigurational methods (Jensen
et al. 1996, Fleig et al. 1997, Vilkas et al. 1998, Ishikawa and Vilkas 2001) and
coupled cluster theory (Eliav et al. 1994, Visscher et al. 1995, Visscher et al. 1996,
Visscher et al. 2001), together with properties such as NMR (Ishikawa et al. 1998).
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The Gaunt or Breit term is frequently treated as a perturbation but may be treated
variationally.

There are four equations in the one-particle Dirac equation, containing as its
unknowns four spinors, which collectively form a four-component wavefunction.
Solution of these equations also provides the energy of the system. The four
components consist of two ‘large’ and two ‘small’ components, corresponding to
the electron and the positron; the amplitude of the former is usually much greater
than that of the latter. For highly relativistic core electrons, the ‘small’ components
actually have appreciable magnitude (in the non-relativistic limit �small ¼ ð1=2mcÞ
ð� � p̂pÞ�large, where 2mc in atomic units is approximately equal to 274). Both valence
‘large’ spinors resemble in shape the non-relativistic orbital, while the ‘small’
components have their maximum amplitude at much smaller radii. In atoms, there
is a quantum number that distinguishes between the two different ‘large’ and two
different ‘small’ components. This quantum number may be related to the quantum
number j, which is the vector sum of the usual orbital angular momentum l and spin
angular momentum s¼ 1/2, by j¼ lþ 1/2 or j¼ l� 1/2. Thus the differences between
each pair of components are seen to be a consequence of SOC. Illustrations of
the radial shapes of the four spinors of the valence atomic orbitals of Pb (Lee et al.
1977) and U (Kahn et al. 1978) may be helpful to a reader unfamiliar with four-
component wavefunctions. Standard physics texts containing expositions of the
Dirac and other relativistic equations include Bethe and Salpeter (1957), Messiah
(1961), Bethe and Jackiw (1964) and Sakurai (1967), each of which has been
reprinted frequently.

It is possible to manipulate the four equations to eliminate the two small
component spinors corresponding to positrons, producing a two-component
equation (e.g. van Lenthe et al. 1996). One may also eliminate the spin dependence
of the Hamiltonian, making it spin free, thereby eliminating a third component and
producing a single-component equation. There has been a great deal of work on
these eliminations, with Foldy–Wouthuysen (Foldy and Wouthuysen 1950) and
Douglas–Kroll (Douglas and Kroll 1974, Hess 1986, Jansen and Hess 1989) being
two particularly important transformations. The former transformation, truncated
at order 1/c2, leads to the HSO operator used below. It is now possible to carry the
Douglas–Kroll transformation to third or even higher orders (Nakajima and Hirao
2000a, b, Wolf et al. 2002). Kutzelnigg has explored the mathematical properties of
the transformations in detail (Kutzelnigg 1989, 1990, 1997, Kutzelnigg and Liu
2000), and Dyall (2002) has recently given a summary of his papers on component
elimination. A procedure known as relativistic elimination of small components
(RESC) has also been considered recently (Nakajima and Hirao 1999, Nakajima
et al. 1999). Nuclear gradient implementations exist for many of these elimination
schemes, including the RESC scheme (Fedorov et al. 2001b) and Douglas–
Kroll (de Jong et al. 2001). A number of workers stop after reducing the four-
component equation to two by elimination of its small components, since this
approach retains an explicit SOC during self-consistent field (SCF) orbital
optimization. Often this is done for linear molecules, but a program has been
developed recently for two-component calculations on polyatomic molecules (Fleig
et al. 2001).

However, since most available programs for molecular quantum chemistry are
single-component codes, solving the non-relativistic Schrödinger equation, it is
reasonable to attempt to adapt these programs to include SO and other relativistic
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corrections. The Foldy–Wouthuysen transformation of the Dirac–Coulomb
equations leads to the following operators, first the ordinary non-relativistic
Schrödinger operator

H
NR ¼ �

�hh2

2m

X
i

r2
i �

X
i

X
�

Z�e
2=ri� þ

X
i

X
j

e2=rij þ
X
�

X
�

Z�Z�e
2=r��, ð1Þ

and, at order 1/c2, the spin-independent mass–velocity and Darwin relativistic
corrections (whose two-electron term is often neglected):

H
MV ¼ �

�hh4

8c2m3

X
i

r 4
i , ð2Þ

H
D ¼ �

� �hh2

2m2c2

X
i

X
�

Z�e
2�ðri�Þ þ

X
i

X
j

e2�ðrijÞ

" #
: ð3Þ

These are often termed ‘scalar’ relativistic effects and may be used to define a
spin-free Hamiltonian, also known as the Cowan–Griffin (Cowan and Griffin1976)
operator,

HSF ¼ HNRþHMVþHD: ð4Þ

The final term at order 1/c2 is the SOC term, known as the Breit–Pauli SO operator,

H
SO ¼

1

2m2c2

X
i

X
�

Z�e
2

r3i�
l̂li� � ŝsi �

X
i

X
j

e2

r3ij
l̂lij � ðŝsi þ 2ŝsjÞ

" #
, ð5Þ

which contains both one- and two-electron terms. In these formulae, l̂l and ŝs are
space and spin angular momentum operators, l̂li� 	 ðri � R�Þ 
 pi, l̂lij 	 ðri � rjÞ 
 pi,
Roman and Greek subscripts refer to electrons and nuclei respectively and the
other symbols have their usual meanings. Schwarz et al. (1989) have considered the
formal Z dependence of these terms, and Tarczay et al. (2001) give very interesting
and useful comparison of sizes of the spin-free and very small spin-dependent terms
for close-shell, light molecules. Spin–spin coupling (see Langhoff and Kern 1977),
which is also of order 1/c2 and is relevant to the zero field splitting observed
in electron paramagnetic resonance (EPR) experiments, is not considered in this
review.

Exclusion of electron–positron pair creations leads to the inclusion of kinematic
multiplicative factors in each term of an operator that is otherwise identical to
HSO given above, which is termed the no-pair SO Hamiltonian (Samzow and Hess
1991). The latter may be used in a variational manner. However, the Breit–Pauli
Hamiltonian is variationally unstable and thus must be used as a perturbation only
(Hess et al. 1995).

In addition to two of the present authors (Fedorov and Gordon 2000), many
have incorporated the Breit–Pauli HSO into single-component programs. Among
these are Klotz et al. (1984), Furlani and King (1985), Yarkony (1992), Havlas et al.
(1998), Berning et al. (2000) and Malmqvist et al. (2002).

The two-electron term of the Breit–Pauli operator grows slowly as the nuclear
charge Z increases. In contrast, the one-electron term contains Z both explicitly and
implicitly through the r3i� reciprocal and thus grows rapidly with Z. This suggests an
approximation in which the two-electron terms are omitted, and this is compensated
for by treating Z as an adjustable parameter Zeff. This approximation is considered
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in section 2.4. If the two-electron term is retained, it may be calculated completely.
However, approximate treatments of the two-electron terms have been investigated,
in order to improve computational time with as little sacrifice of accuracy as
possible. Our approach (Fedorov and Gordon 2000) is to omit active–active two-
electron contributions to the HSO matrix elements, and this is compared with full
computation of the two-electron term in section 2.5. Hess et al. (1996) approximate
this term by defining a mean field operator by averaging the density of any unfilled
valence orbitals and then neglecting all but the one-centre integrals in the two-
electron term, only. Tatchen and Marian (1999) have evaluated the success of the last
approach for light elements.

Finally, the entire Breit–Pauli operator may be approximated by an effective
operator, inspired by core potential operators. The latter are typically extracted from
relativistic wavefunctions for atoms by averaging the two potentials that generate the
large component radial wavefunctions, labelled j¼ l� 1/2, to produce an averaged
relativistic effective potential UAREP. These potentials permit even non-relativistic
programs to include spin-free mass–velocity and Darwin effects. This use of the
average of the potentials suggests that their difference preserves information about
the SO effect. These SO operators are of the form

HSO ¼
XL�1

l¼1

�UREP
l

l

2l þ 1

Xlþ1=2

m¼�l�1=2

jl, l þ 1=2,mihl, l þ 1=2,mj

 

�
l þ 1

2l þ 1

Xl�1=2

m¼�lþ1=2

jl, l � 1=2,mihl, l � 1=2,mj

!
ð6Þ

where the differences in the radial potentials

�UREP
l ¼ UREP

l, lþ1=2ðrÞ �UREP
l, l�1=2ðrÞ ð7Þ

are typically expanded in Gaussians and require a modified version of the core
potential integrals (Pitzer and Winter 1991). Several different families of effective SO
potentials have been generated in this way such as ECPs based on the Cowan–Griffin
equation, which have been reviewed by Ermler et al. (1988), and ab initio model
potentials (AIMPs) representing the Wood–Boring operator (Seijo 1995, Seijo et al.
2001). Alternatively, the SOC contribution from the core electrons removed by a
potential can be computed on the fly, using atomic core and molecular valence
orbitals, without any need for fitting a potential to purely atomic data, as was
developed for model core potentials (Krause and Klobukowski 1996, Fedorov and
Klobukowski 2002). The latter are considered in section 2.6.

Obviously, an important question about SOC is what its effect is on molecular
structures. Because of concern about the variational stability of the Breit–Pauli
operator (Hess et al. 1995), it is normally used as a perturbative term following a
non-relativistic or spin-free relativistic wavefunction determination. This a posteriori
approach means that little work has been done on nuclear gradients including SO
effects. We are aware of only two recent attempts to program nuclear gradients
including SOC. Han et al. (1998) include an ECP operator of the form of equation (6)
variationally in a two-component RHF wavefunction and develop an analytic
gradient for it, except that the integral derivatives of the SO operator are obtained
by a numerical differentiation. Matsika and Yarkony (2001, 2002) have included the
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Breit–Pauli operator via quasi-degenerate perturbation theory in their formalism for
locating conical intersections and other interesting features along seam crossings.

Of course, one may also investigate the effect of SOC on structures by purely
numerical means, from the energies only, so a few examples may be given. Han et al.
(1998) found that the inclusion of SOC shortens the bond distance of PbHþ from
1.813 to 1.793 Å, whereas in the closed-shell system PbH4 there is almost no effect:
from 1.740 to 1.737 Å. High level calculations (Flores and Gomez 2002) predict a
very small energy preference for a bent HCCCS radical over linear, but an SOC
stabilization of 300
 10�6Eh at linear geometries versus 10
 10�6Eh at bent
geometries reverses the energy order from a prediction for a linear molecule, in
agreement with experiment. Two-component zeroth order regular approximation
(ZORA) computations (Liu et al. 2001) for a number of lead compounds show that
SOC has effects similar to their results for Pb2, for which re increases by 0.048 Å, De

decreases by 1.22 eV, and !e decreases by 21 cm�1. It is safe to say that SOC effects
on molecular geometries and other potential surface parameters will be larger for
open-shell systems and/or those containing heavy atoms. Additional work on the
inclusion of SOC in the variational wavefunction optimization and implementation
of nuclear gradient codes including this term is clearly desirable.

No matter what form of SO operator is chosen, one must evaluate the coupling
of states that are usually but not always of different multiplicity. This may be done
by perturbation theory (Havriliak and Yarkony 1985, Yarkony 1986) but is most
often done by configuration interaction (CI) calculations (Battle and Gould 1993,
Sjøvoll et al. 1997, Mitrushenkov and Palmieri 1997, Yabushita et al. 1999, Jansen
et al. 1999, Berning et al. 2000, Tilson et al. 2000), evaluatingHNR

þHSO orHSF
þHSO

matrix elements between the states. Matrix elements over the Breit–Pauli HSO

operator introduce new integrals to be evaluated, related to derivatives of ordinary
integrals (e.g. King and Furlani 1988, Bearpark et al. 1992). The orbitals for all of
these methods are usually optimized with an appropriate multiconfigurational
SCF (MCSCF) wavefunction, typically of the complete active space (CAS) SCF
(CASSCF) type (Schmidt and Gordon 1998).

If only one singlet and one triplet configuration are included, one must evaluate
HSO elements between the singlet and all three spin functions of the triplet state, aa,
abþ ba and bb. As the number of these matrix elements gets large quickly with
increased CI spaces, it is useful to exploit symmetry to minimize the computational
effort, and this is discussed in section 2.3. The SO CI (SOCI) calculation may be done
in a basis of determinants or configurations, or in a state basis (Hay 1982) where only
a few of the low lying states (expanded in a larger determinant or configuration
space) are kept. Working in the state basis reduces the amount of time required for
HSO matrix evaluation by knowing which configurations have small CI coefficients,
and of course it leads to a much smaller diagonalization, in the spirit of ‘internally
contracted’ CI. Of course, increasing the number of states included in the model
space leads eventually to the same result as working in the full CI space, but the use
of small model spaces greatly reduces the effort. Many calculations cited in this work
are based on that latter approach. These are denoted by SO-CASCI (or SO-MRCIS
or SO-MRCISD) for the Hamiltonian matrix constructed in the basis of a few
selected CASCI (or multireference CI with single (MRCIS) or with single and double
(MRCISD) excitations) states.

The idea of working in the state basis suggests an alternative to the use of SOCI,
namely inclusion of SO into multireference perturbation theory, with the SOC
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perturbations now included into the effective Hamiltonian. This is considered in
detail in section 2.7. SO multiconfigurational quasi-degenerate perturbation theory
(SO-MCQDPT) is based on single and double excitations from the CAS and the
SOC Hamiltonian is constructed in the basis of a few CASCI states, with the
perturbations now built into the effective SOC Hamiltonian.

The result of an SOCI of any type is a spin-mixed wavefunction, in which the
degree of mixing of different spin states depends on the size of the HSO interaction
and the energy difference between the original Russell–Saunders states. The degree
of mixing governs the extent to which ISCs may occur. Transition moments between
spin-mixed states may be computed, as illustrated in section 3.3, yielding phosphor-
escence rates.

2.2. Phenomenological spin–orbit coupling and chemical reactions
In order to examine the effect of SOC on energies of chemical reactions it is useful

to consider the phenomenological operator that is given by ĤHSO ¼ AðrÞðLSÞ where L
and S are the total angular and spin momenta and A(r) is some radial dependence
operator. While this operator is known to possess somewhat different symmetry
properties and it should not be used for ab initio calculations of general molecules
it is of use in understanding qualitative SO splitting in atoms or even diatomic
molecules.

Suppose one has a chemical reaction Aþ B ! CþD and one wants to know
how large the SOC effect is on the reaction enthalpy, relative to doing a quantum
chemical calculation without SOC. In general, the SOC effects may be manifold:

(1) The total ground state energy of each species can be directly affected.
(2) The minimum geometry is affected by the change in the energy.
(3) Excited states can interact with the ground state, shifting its energy.
(4) Excited states may also be split by SOC. Excited state energies directly affect

the heat of chemical reactions through electronic partition functions (see
below).

Let us focus on the case without very heavy atoms; H–Xe may fall into this
category. In this case (b) can usually be neglected. Consider the other three issues
listed above in some detail.

(a) Naturally, only states with some degeneracy can be split. The vast majority of
stable compounds have singlet ground states and belong to the totally symmetric
irreducible representation, and hence the SOC effect can be confidently expected to
be small. Diatomic molecules are probably the most common exception, since for
such species degenerate states are not unusual. Atoms, on the other hand, typically
have degenerate ground states. In this case the phenomenological operator ĤHSO ¼

AðrÞ LSð Þ ¼ 1
2
AðrÞ J2 � L2 � S2

� �
is useful, where J is the total angular momentum

J¼LþS. By computing eigenvalues of this operator in the LS coupling scheme, one
obtains the SOC shifts to first order, i.e.

EðJLSÞ ¼ EðLSÞ þ JLS ĤHSO
��� ���JLSD E

¼ EðLSÞ þ 1
2
A JðJ þ 1Þ � LðLþ 1Þ � SðS þ 1Þ½ �, ð8Þ

where A is a constant and we use atomic units. Suppose that a chemical reaction
involves formation of a fluorine atom. By looking up experimental energy levels
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(e.g. Moore 1949, 1952, 1958), one finds that the LS state 2P is split into 2P3/2 and
2P1/2. The ground state is then 2P3/2 and its energy is shifted by 134.7 cm�1 or
0.38 kcalmol�1 relative to (lower than) the 2P state. Chemical accuracy is often

considered to be 1 kcalmol�1 (e.g. Curtiss et al. 1998) so even for this very light atom

SOC makes a non-negligible contribution to reaction enthalpies. To obtain this value
for F, one first calculates A: E(J, L, S)�E(J� 1, L, S)¼AJ (this relation is known

as the Landé interval rule), and thus E(J¼ 3/2, L¼ 1, S¼ 1/2)�E(J¼ 1/2, L¼ 1,

S¼ 1/2)¼ 3A/2¼�404.10 (cm�1) and hence A¼�2/3
 404.10 (cm�1). As given by
equation (8), E(2P3/2)¼A/2 relative to E(2P), and thus one obtains the value of

�134.7 cm�1. This number can be easily computed theoretically as well. Incidentally,
halogen atoms appear to have the largest SOC splitting among the main group

elements within each row. In the case of molecules, however, the effect can vary

greatly depending on the details of the electronic structure. For example, as found by
Fedorov et al. (1999, 2001a), in Oþ

2 the ground and excited 2� states have very

different splittings of 200. (X 2�g) and 3.5 cm�1 (A 2�u).
(c) For main group elements the effects of such off-diagonal coupling are usually

fairly small. The situation is quite different for transition metals with many tightly

packed electronic states arising from open d and f shells. As an example, consider the
group 14 main group elements C–Pb. According to calculations described below, the

coupling of excited states to the ground state increases the splitting 3P0–
3P2 by 0.1

(C), 2.5 (Si), 84.9 (Ge), 507.8 (Sn) and 4101. (Pb) cm�1 or relative to the experimental
splitting 0.6% (C), 3.2% (Si), 15.2% (Ge), 30.0% (Sn) and 52.4% (Pb). As expected

the effect grows quickly with atomic charge.
(d) In order to estimate electronic partition functions some simple ab initio

atomic calculations were performed. The all-electron basis sets were taken from an

unrelated study (Lie et al. 2002) and all states coming from the s2p2 configuration of
C–Pb, namely 3P, 1S and 1D, were coupled using SO-MCQDPT, based on the double

valence active space of 4 electrons in 8 orbitals, chosen to include 4 valence nsnp and
4 virtual (nþ 1)s(nþ 1)p orbitals in order to treat electron correlation properly.

The electronic partition function is given by

Zel ¼
X1
i¼0

gi exp �
Ei

RT

� �
, ð9Þ

where gi is the degeneracy of an electronic level having energy Ei (relative to E0¼ 0).
From Zel one can easily compute free energies, for example, the electronic

contribution to the Gibbs free energy:

Gel¼� RT lnZel: ð10Þ

If the ground state is well separated from the excited states (meaning that the
exponent prefactor for all excited states is close to 0), then Gel is simply given by

�RT ln g0. Adding excited states in general makes Gel more negative, because of the

larger Zel that is always positive. Enthalpy (or internal energy) behaves differently;
it is given by

Hel ¼ Eel ¼
1

Zel

X1
i¼0

giEi exp �
Ei

RT

� �
: ð11Þ
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In particular, if excited states are neglected, then E0 and thus Hel are zero. This
means that the electronic partition function effects at low temperature enter
thermochemistry primarily through the entropy.

If SOC effects are neglected, the excited states are high in energy, and the ground
state degeneracy does not change for all reactants and products (a fairly common
occurrence for closed-shell molecules composed of light atoms), then the contribu-
tion of the electronic partition function to the reaction energies is close to zero.

Next, consider the effect of SOC on electronic partition functions, using the main
group 14 elements as examples. Ab initio calculations or experimental data reveal
that for all of these atoms the lowest LS states are well separated. In fact, the
separation changes little with atomic number for Si–Pb: in each case, the 3P state is
the ground state, and the first excited state, 1D, is 30.2 (C), 18.4 (Si), 18.0 (Ge),
16.2 (Sn) and 19.1 (Pb) kcalmol�1 higher. The second excited 1S state is 30.7 (C),
23.9 (Si), 25.3 (Ge), 24.2 (Sn), 26.7 (Pb) kcalmol�1 higher relative to 1D. Thus a very
good estimate of the spin-free electronic sum would be �RT ln 9, growing linearly
with temperature (9 is the product of the space and spin degeneracy of 3P).

When SOC is included in the calculations, the LS levels are split and coupled. As
expected, the SOC is small for C and large for Pb. In the case of C, although the
formerly degenerate nine substates of 3P state are split into 5þ 3þ 1-fold degenerate
levels 3P2,

3P1 and 3P0, the splitting is small and so the exponent factors are close
to 1; thus, one recovers approximately Zel¼ ln 9. As the atomic charge increases,
the exponential factors appreciably decrease Zel. The values of Gel are plotted in
figures 1(a)–1(c). It is clear that the spin-free values are nearly a straight line and
SOC effects make Gel less negative at room temperature by 1–2 kcalmol�1. This
difference directly adds to the Gibbs’ reaction energy.

Similar calculations can be performed for molecules. Consider XH, where
X¼Ti, Zr and Hf. We couple the same states and use the same basis set as in a
previous study by Koseki et al. (2001b). The ground states are a quartet for Ti and a
doublet for Zr and Hf; thus one can see that the slope at low temperature for spin-
free values is different (figures 1( d )–1( f )). Secondly, a large number of low lying
excited states cause the Gel dependence on T to depart from linearity.

As expected, the effect of excited states and thus SOC effects grow rapidly with
temperature. As a word of caution, one should remember that at high temperature
commonly used approximations (e.g. harmonic oscillator, rigid rotor, ideal gas
model) for computing partition functions start to become less applicable. Possibly
the most important among these is anharmonicity. Especially for small molecules
or for isolated modes, anharmonicity can be accounted for with additional effort
(e.g. Chaban et al. 1999).

In conclusion, we suggest the reader consider the above factors and decide
whether the sought-after accuracy permits the neglect of SOC effects for a given
reaction.

2.3. Symmetry in spin–orbit coupling
Computation of SOC requires evaluation of matrix elements of the operator HSO

between configurations or states, in order to perform the SOCI. No matter what
form of the HSO operator as described in section 2.1 is chosen, adding this SOC term
changes the symmetry properties of the Hamiltonian HNR

þHSO or HSF
þHSO.

Since the number of such matrix elements of HSO can be very large, it is useful to
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exploit symmetry in order to avoid computing the numerous zero elements and,
wherever possible, to generate elements related to other elements by simple formulae.

A thorough review of the symmetry properties of HSO was given by Fedorov and
Gordon (2002). In atoms, instead of orbital (L) and spin (S) angular momenta, the
total momentum J¼LþS is conserved. The symmetry group of atoms is Kh with or
without SOC. In the case of molecules, however, the symmetry with SOC is
described by either point groups (integer spin) or double groups (half-integer spin).
Rotation by an angle a around an axis given by a normalized vector n can be written
as exp½�i�ðĴJ � nÞ�, where J is the angular momentum operator, and it is obvious that,
for half-integer momentum J, rotations by a and aþ 2� differ by sign. The double
groups thus have twice as many elements as the point groups, corresponding to
having elements aþ 	 (in the Euler angle (a, b, 	) representation) and aþ 	þ 2�.
Double groups, however, are not direct products of the point groups times a group
containing two elements. Rather, the multiplication algebra of the double groups
follows the angular momentum properties. The irreducible representations of the
double groups contain all those irreducible representations for the corresponding
point group (called single valued) and some additional (double-valued) representa-
tions that are very often degenerate. The double-valued representations can easily
be obtained by reduction of the irreducible representations of Kh with half-integer
spin onto the given molecular group. For example, the C2v double group is
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Figure 1. Temperature dependence of electronic Gibbs’ energies for (a) C–Pb with SOC,
(b) C–Pb without SOC, (c) difference (SOC effect) for C–Pb, where atoms are marked
as C (circles), Si (squares), Ge (diamonds), Sn (pluses), Pb (triangles), (d ) TiH, ZrH,
HfH with SOC, (e) TiH, ZrH, HfH without SOC, ( f ) difference (SOC effect) for TiH,
ZrH, HfH, where molecules are marked as TiH (circles), ZrH (squares) and HfH
(diamonds).

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



not Abelian and contains four non-degenerate single-valued and one two-fold
degenerate double-valued irreducible representations. The double groups that arise
when SOC is considered are exactly the same as the factor groups of the space groups
in crystals. In the latter case translation by a fraction of the period gives rise to
doubling of the group elements for non-symmorphic groups. More details on the use
of double groups in SOC calculations can be found in Marian (2001).

For practical purposes it is convenient to formulate selection rules for the SOC
matrix elements. The rules differ somewhat, depending on how one constructs the
bra and ket states. The most convenient approach is to take the ‘LS’ states (that is,
states coming from computations with the spin-free Hamiltonian, not necessarily
atomic) as the basis states. Then one can easily add code for computing their SOC
matrix elements to a conventional quantum chemistry program. There is some
advantage in the alternative of taking linear combinations of the ‘LS’ terms, for
example, by constructing such combinations that transform as the irreducible
representations of the double groups. This allows block diagonalization of the
SOC Hamiltonian matrix that can be useful for large SOCI. Another choice is to
make the Hamiltonian matrix real by taking linear combinations that have definite
time reversal symmetry (not possible for some point groups). In any case, such linear
combinations reduce the diagonalization cost but ultimately one still has to compute
matrix elements for the ‘LS’ terms.

The general SOC matrix element can be written as

h�GiSMS jHSOj �0Gi0S0M0
Si, ð12Þ

where the SOC Hamiltonian HSO might be the full Breit–Pauli operator given by
equation (5), containing both one- and two-electron operators, or the semi-empirical
Zeff form containing only the one-electron term discussed below. The state j�GiSMSi

contains the symmetry labels of the wavefunction obtained from a conventional
spin-independent calculation: G denotes the irreducible representation of the point
group G of the molecule, i distinguishes degenerate components of G, a distinguishes
equivalent irreducible representation and S(Sþ 1) and MS are the eigenvalues
(in atomic units) of the spin operators ŜS2 and ŜSz respectively.

Now we summarize the selection rules for the SOC matrix elements, which can
be derived from the Wigner–Eckart theorem and the Hermitian properties of the
SOC Hamiltonian.

The SOC matrix element is zero if any of the following is satisfied:

(1) Rules due to spin momentum

(a) both bra and ket are singlets (S¼ 0 and S 0 ¼ 0);
(b) spins for bra and ket differ by more than unity (|S�S 0|>1);
(c) spin projection on the z-axis of bra and ket differ by more than unity

(|MS�M0
S|> 1);

(d) bra is equal to ket and both states are represented by a real-valued (or
purely imaginary) wavefunction;

(e) either only bra or only ket has half-integer S (SþS 0 is half integer).

(2) Rule due to spatial part (angular momentum for atoms)

(a) the product G�GL�G0 does not contain the totally symmetric
representation.
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GL are the irreducible representations to which the three components x, y and z of
the angular momentum L belong. (For atoms this rule duplicates rules 1(a)–1(c),
with the replacement of spin by angular momentum; for linear molecules the matrix
element is zero if |Lz�Lz

0|>1. In addition, for both atoms and molecules with an
inversion centre, parity is conserved, that is terms of different parity do not mix.)

Instead of separating spin and orbital symmetries as above, one can determine
whether a SOC matrix element is zero using the double group symmetry. In this case,
since HSO belongs to the totally symmetric representation, the product G
GL


G0

is reduced to G
G0. The rules due to spin momentum are in general lost if the bra
and ket represent spin-mixed states. It was found (Fedorov and Gordon 2002) that,
if the bra and ket are states coming directly from a calculation using the spin-free
Hamiltonian, then using such double-group rules is disadvantageous compared with
the rules given above.

Using symmetry properties related to spin rotations, at most three elements need
to be explicitly calculated, given S and S 0:

h�GiSM0
S � 1 jHSOj�0Gi0S0M0

Si ¼�ðS0, 1,M0
S, � 1jS,M0

S � 1Þh�GiSjL̂LþŜSj�
0Gi0S0i, ð13Þ

h�GiSM 0
SjH

SOj�0Gi0S0M0
Si ¼ ðS0, 1,M0

S, 0jS,M
0
SÞh�GiSjL̂L0ŜSj�

0Gi0S0i, ð14Þ

h�GiSM 0
Sþ1jHSOj�0Gi0S0M0

Si ¼�ðS0, 1,M0
S,þ1jS,M0

Sþ1Þh�GiSjL̂L�ŜSj�
0Gi0S0i: ð15Þ

In equations (13)–(15), the quantities in parentheses are the Clebsch–Gordan
coefficients. The remaining elements are zero if |MS�MS

0|>1, or they can be
computed from the above three generators by simple scaling with ratios of the
Clebsch–Gordan coefficients, e.g.

�GiSMS � 1jHSOj�0G
0

iS0MS


 �
¼ �ðS0, 1,MS;�1jS,MS � 1Þ �GiSjL̂LþSj�

0G
0

iS0
D E.

ðS0, 1,M0
S,� 1jS,M0

S � 1Þ, ð16Þ

where the reduced matrix element is calculated from the above defining relation
(for M0

S). Some Clebsch–Gordan coefficients are equal to zero; however, using the
largest possible MS, that is MS¼S, M0

S¼S0, always leads to non-zero Clebsch–
Gordan coefficients, thus avoiding division by zero.

If the wavefunction is real valued (or purely imaginary valued), then only two
rather than three elements have to be computed, as there is a simple relation as
follows (given separately for S 0 ¼S and S 0 ¼Sþ1):

�GiSMSjH
SOj�0G0i0Sþ 1,MS þ 1


 �
¼ �GiS, �MSjH

SOja0G0i0Sþ 1, �MS � 1

 �

� ð17Þ

�GiSMS � 1jHSOj�0G0i0SMS


 �
¼� �GiSMSjH

SOj�0G0i0SMS � 1

 �

� ð18Þ

The detailed structure of the SOC Hamiltonian is provided below. The cases of
equal and different multiplicities are given separately in tables 1 and 2. The orbital
part is assumed to be different for the two states. The only two matrix elements
which need to be explicitly calculated are A and B, as the rest can be obtained from
these two.

The eigenstates of the SOC Hamiltonian are classified according to the double
point group symmetry, for example in atoms by the labels J2 and Jz.
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2.4. Effective charge approach
The effective nuclear charge (Zeff) approximation is the simplest method available

for the qualitative computation of SOC effects in molecules. The Zeff approximation
consists of using only the one-electron term from the Breit–Pauli Hamiltonian given
in equation (5):

HSO ¼
e2

2m2c2

XNel

i¼1

XNatom

�¼1

Zeff �ð Þ

r3i�
li� � si, ð19Þ

in which the nuclear charges Za have been replaced by empirical parameters Zeff(a).
The motivation for this is two-fold: (a) the success of the Landé interval rule AL � S
in fitting observed atomic spectra (as discussed in section 2.2; see also Condon and
Shortley (1935) regarding atomic SOC) and (b) the understanding that the two-
electron term grows more slowly than the one-electron term of HSO, as discussed in
section 2.5. The parameters Zeff(a) are determined by fitting this operator to some
experimental SO splitting, most often some atomic state. One relies on the hope that
deviations from the true nuclear charges Za will compensate for the error of
neglecting the two-electron terms.
This approximation has its roots in the transferability of atomic SOCs into

molecules, as suggested by McClure (1949). The r�3 dependence of the operator
means that the coupling is dominated by the interior shape of valence orbitals, which
are not greatly modified by bonding. The Zeff approximation has been employed by
many workers including Stone (1963), Ishiguro and Kobori (1967), Hay et al. (1979),
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Table 1. HSO matrix for equal multiplicities.

S S� 1 S� 2 . . .  M0
S

S A �B* 0 0 0
S� 1 B aA �bB* 0 0
S� 2 0 bB* . . . . . . 0
. . . 0 0 . . . . . . . . .
MS " 0 0 0 . . . . . .

A,B—calculated matrix elements, while a and b are ratios of the
Clebsch–Gordan coefficients: a¼ (S, 1, S� 1, 0|S, S� 1)/(S, 1, S, 0|S,
S) and b¼ (S, 1, S� 1, �1|S, S� 2)/(S, 1, S, �1|S, S� 1). ‘‘. . .’’ denotes
further propagation of A and B by means of equation (16).

Table 2. HSO matrix for different multiplicities.

Sþ 1 S S� 1 . . .  M0
S! �S �S� 1

S B A bB* 0 0 0 0
S� 1 0 aB cA . . . 0 0 0
S� 2 0 0 . . . . . . . . . 0 0
MS" 0 0 0 . . . . . . . . . 0
�S 0 0 0 0 . . . . . . B*

A,B—calculated matrix elements and a, b, c are ratios of the Clebsch–Gordon coefficients:
a¼ (Sþ 1, 1, S,�1|S, S� 1)/(Sþ 1, 1, Sþ 1, �1|S, S), b¼ (Sþ 1, 1, S� 1, 1|S, S)/(Sþ 1, 1,
�S� 1, 1|S, �S), c¼ (Sþ 1, 1, S� 1, 0|S, S� 1)/(Sþ 1, 1, S, 0|S, S).
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Cohen et al. (1979), Wadt (1981, 1982), Yabushita and Morokuma (1988) and

Heinemann et al. (1995a, b). The idea has received theoretical justification from

Moores and McWeeny (1973) who pointed out that for spherically symmetric atoms

a �(r)L�S form is equivalent to the entire operator, and who therefore concluded that

the use of good wavefunctions is more important than the exact evaluation of all

terms in the SO operator. Hinkley et al. (1972) also noted that two-centre

contributions are small because of cancellation between the two-center one- and

two-electron terms. Therefore, the Zeff approximation is considered to be an effective

means to estimate SOC effects in molecules.

A complication arises when ECP calculations are employed, as is frequently the

case for heavy elements, since the use of averaged relativistic potentials readily

incorporates spin-free relativistic effects. However, ECP orbitals go to zero at the

nuclei and lack the correct radial nodal structure (although one such node may be

present when semi-core potentials are used) and, therefore, are very different in

shape from all-electron orbitals in the small r region. This is crucial for the

expectation value of the one-electron term of HSO because of its r�3 dependence,

and results in very small splittings unless rather large Zeff parameters are used (Wadt

1982, Klobukowski 1991). A convincing demonstration of this can be found in

figures 3 and 4 of Stevens and Krauss (1982). The use of large Zeff values reduces

their physical interpretation from being a small adjustment to the true nuclear charge

that compensates roughly for the neglect of the two-electron term to simply being

recognized as empirical parameters. Consequently, the reliability and justification of

the Zeff approximation can be questioned. However, as described in this section, this

approximation is a viable approach for introducing SOC effects in molecules in a

semiquantitative fashion, as concluded by Wadt (1982).

Systematic studies of the Zeff approach for the majority of the periodic table

began with Koseki et al. (1992), who determined the Zeff values for the second- and

third-row main group elements using the all-electron basis sets 6-31G(d). Because of

the absence of basis sets of similar quality for heavier elements, and a desire to use

relativistic core potentials so that spin-free relativistic effects are also included,

Koseki et al. (1995) determined Zeff values for the main group elements using the

SBKJC family of core potentials and basis sets (Stevens et al. 1984, 1992). The Zeff

parameters for the transition metals and sixth-row main group elements were given

by Koseki et al. (1998), using the same SBKJC ECP family. A comparison of using

the Zeff operator versus using the full Breit–Pauli HSO for transition metals was given

by Koseki et al. (2001a). For the main group elements, in contrast to most previous

workers, these Zeff values were obtained by reproducing the observed splittings in

some low lying state of the monohydrides rather than an atom state, as the intended

use of these parameters is in molecules. For transition metals, there are insufficient

experimental data to obtain Zeff from molecular data, and therefore the parameters

were obtained by fitting appropriate atomic states. Tables 3 and 4 contain the Zeff

parameters for main group and transition metal elements respectively.

As expected, the few Zeff parameters given for all electron (AE) basis sets in these

tables are similar to the true nuclear charges but are slightly smaller. For carbon, the

one-electron term is typically about twice as large as the two-electron term and is of

opposite sign. Thus a value of Zeff¼ 3.6 replacing Z¼ 6 makes physical sense. While

these data were obtained with the 6-31G basis set, these values should be transferable

to any other all electron basis.
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In contrast, the parameters for use with the SBKJC ECPs are much larger than
the true nuclear charges, with some exceptions. As already mentioned, the parameter
is now also correcting for the poor representation of the inner portion of the valence
orbitals, containing the unpaired electrons being coupled by the SO effect. These
orbitals are now nodeless, with even the s orbitals going to zero at small r, so a larger
Zeff is needed to compensate for the low electron density at small r. Those elements in
which there is no core orbital lying below the unfilled valence orbital, namely the
2p and 3d elements, do not show such pronounced increases in their parameters,
because their valence orbitals are more or less the correct shape at small r. The use of
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Table 3. Effective nuclear charges for main group elementsa.

Row 1 2 13 14 15 16 17 18b

2 Li Be B C N O F Ne
(1.35) (2.00) (2.75) (3.60) (4.55) (5.60) (6.75) (8.00)
1.5 2.2 3.0 3.9 4.9 6.0 7.2 8.5

3 Na Mg Al Si P S Cl Ar
(10.04) (10.80) (11.53) (12.25) (12.94) (13.60) (14.24) (14.85)
132 144 156 168 180 192 204 216

4 K Ca Ga Ge As Se Br Kr
779 820 341 1312 1353 1394 1435 1476

5 Rb Sr In Sn Sb Te I Xe
4070 4180 1617 5500 5610 5720 5830 5940

6 Cs Ba Tl Pb Bi Po At Rn
12 210 12 432 9153 18 204 18 426 18 648 18 870

aValues in parentheses are for use with all electron basis sets, while other values are meant for
use with the SBKJC effective core potential family.
b Values given for the rare gases are obtained by extrapolation of linear relationships found for
the other main group elements. Cohen et al. (1979) give alternative values for a few rare gases,
obtained in their cations.

Table 4. Effective nuclear charges for transition elementsa.

3 4 5 6 7 8 9 10 11 12b

1 Sc Ti V Cr Mn Fe Co Ni Cu Zn
8.6 9.6 10.6 11.6 12.8 13.9 15.1 16.4 17.7 (19.0)

330

2 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
185 192 199 207 214 222 230 237 245 (253)

1584

3 La Hf Ta W Re Os Ir Pt Au Hg
804 1025 1050 1074 1100 1125 1150 1176 1202 (1229)

9040

aValues are meant for use with the SBKJC effective core potential family.
b Values in parentheses are obtained by linear relationships with other transition metals and
may be useful if excited states of these involve d electrons. In most cases the other value,
obtained from extension of the main group elements, is more appropriate. See text.
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the semi-core potentials for Ga, In and Tl, which retain one extra core orbital, is

responsible for their values differing from those of the adjacent full-core main group

element. The SBKJC effective charges presented in these tables should not be

transferred to other ECP basis sets sets, unless the same choice of how many core

orbitals are removed by the potential has been made.

The effective nuclear charges were determined by fitting experimental data for

monohydrides or, for the case of the transition metals, a few atomic states.

Therefore, a simple test of these values is how well they reproduce the large number

of atomic spectral terms that are available. Figure 2 plots the percentage difference

between calculated and experimental energy splittings of as many atomic states as

possible. Positive or negative values indicate whether the Zeff approximation over-

or underestimates the splittings. Most of the errors fall in the range of 30%, with

transition metals, excited states and the heavier elements being more likely to fall

outside this range. Koseki et al. (1992, 1995, 1998, 2001a) discuss the larger errors in

some detail, so only a broad summary is presented here.

Errors of more than 100% are observed for Li, Be, N and Te. In Li and Be and

the 2D state of N, the splittings are smaller than 1 cm�1, so percentage errors are

exaggerated. The 3P2–
3P1 splitting of the lowest 3P state in Te and Po is adequately

reproduced, but not the corresponding 3P1–
3P0 splitting. Experimental results show

that 3P0 is lower in energy than 3P1, namely the energetic level order is irregular: 3P2,
3P0 and

3P1, rather than the inverted order 3P2,
3P1, and

3P0 observed for O, S and Se.

As was found in the later work by Koseki (unpublished), the origin of the incorrect

order in the calculations lies in the omission of 1S0 and
1D2 states that are sufficiently

close to interact with 3P0 and 3P2 respectively. By including these states the
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Figure 2. Percentage difference between the calculated energy splittings and the
corresponding experimental ones. Positive and negative values indicate that the
calculated splittings are overestimated and underestimated respectively. Closed circles:
the lowest electronic states whose azimuthal quantum number L is non-zero. Open
circles: higher electronically excited states.
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experimental order was reproduced. For main group elements, 66% of the atomic
energy splittings are predicted within 20% of the experimental values, and 83% of
the calculated values are within 40% of the experimental values. Koseki et al. (1995)
reported that, for 92 electronic states of non-hydride main group diatomic mol-
ecules, excluding alkali earth elements, only 11 states are in error by more than 30%.
The parameters given in the table for alkali earth elements are not recommended for
use owing to some large errors for these elements.

Unfortunately, few experimental data on diatomic transition metal hydrides are
available (Huber and Herzberg 1979), so atomic spectral terms compiled by Moore
(1949, 1952, 1958) were employed to determine effective nuclear charges for
transition elements (Koseki et al. 1998). The Zeff parameters for transition elements
are listed in Table 4. Their usefulness can be assessed by obtaining the SO splitting of
98 low lying atomic states (48 are from the first row, 26 from the second row and
24 from the third row). As mentioned above, even though the 3d SBKJC orbitals are
qualitatively similar to correct 3d atomic orbitals, 4d and 5d SBKJC orbitals are
nodeless, and, as a result, large Zeff values are given to the second- and third-row
transition metals. The errors in the calculated splittings are plotted in figure 2. Even
though serious errors are observed for Os, Ir and Pt, 70% of the energy splittings are
predicted to be within 20% of the experimental values, and 81% are within 40% of
the experimental values. This is surprisingly similar accuracy to the main group
elements. The group 12 elements Zn, Cd and Hg have filled d orbitals, and, since
their chemistry is dominated by sp rather than d orbitals, their Zeff values for such
states are best determined as if they are main group elements; namely, the pseudo-
orbitals for (nþ1)sp determine the Zeff. The same strategy should be used for the
determination of Zeff for those low lying excited states of group 11 elements that do
not involve open-shell d electrons.

Koseki et al. (1998) examined the larger errors found for transition elements, in
some cases suggesting that the valence (nþ1)p orbital needed to be included in the
active space to improve results. The most serious errors in the predicted order of
energy levels were observed in Os, Ir and Pt. This prompted an additional study
(Koseki et al. 2001a) comparing the Zeff–ECP approach with the full computation of
HSO, together with use of the RESC approximation for including HMV and HD, and
using all electron basis sets. In addition, for some cases, the effect of including
additional electron correlation by means of singles and doubles CI was considered.
Unfortunately, this was limited for technical reasons to only a subset of the external
orbitals (those above the nd and (nþ1)sp). Results for Re and Os were improved, but
Ir and Pt remained unsatisfactory, although the all electron calculations suggested
additional inclusion of electron correlation might give better results. It is clear
that the third-row transition metal Ir represents a severe challenge to the hope that
LS-coupled states may be treated with HSO as a perturbation, and perhaps this atom
will require full Dirac–Coulomb–Breit computations to reproduce its spectra.

In summary, the Zeff approximation using ECP basis sets gives qualitatively
accurate predictions for a majority of the SO splittings in atoms, even though errors
greater than 30% sometimes appear. The applicability of this method to molecules
also seems to be viable. In the late 1960s when the Zeff approach was first being
popularized, the work of Walker and Richards (e.g. Walker and Richards 1968),
which neglected only the two-centre, two-electron terms of HSO in diatomic mol-
ecules, indicated the difficulty of achieving quantitative accuracy with this procedure.
Today, one has the ability to compute the two-electron term exactly, or to quite
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reasonable accuracy by judicious approximations described in the next section.
Therefore, while this semiquantitative approach is the method of choice for
moderate to large molecular systems, the more accurate and less empirical
approaches are viable alternatives for atoms and small molecules.

2.5. Comparative studies of one- and two-electron contributions
In practice, bra and ket states are very often represented by linear combinations

of either Slater determinants or configuration state functions (CSFs). CSFs can also
be represented by linear combination of Slater determinants. Working in a CSF basis
has the advantage of having a definite S2 value; however, matrix element algebra
becomes quite complex. Two different approaches are possible: a direct approach
that is based on using Slater rules for a matrix element between two determinants
and an indirect approach (Furlani and King 1985) based on evaluation of a
generalized density factor (form factor) that multiplies either a one- or two-electron
SOC integral.

The advantage of the indirect method is that it does not require storing the 2e
integrals that are usually kept in memory in the direct method. The penalty for this
advantage is having to calculate, sort and store the form factors. This effectively
restricts the practical applicability of the indirect approach to the CAS type of
wavefunction. Thus, the indirect method is best used with small active spaces and
large basis sets, whereas the direct approach may not be able to handle large basis
sets owing to limited computer memory. A determinant approach by Sjøvoll et al.
(1997) could be classified as indirect in the terminology of this paper. This approach
provides a considerable advantage over the previously existing form factor method
briefly discussed below, as it provides the means of effectively calculating the
generalized density factors without having to sort them. An intermediate method
also exists, known as the symbolic matrix element method (Yarkony 1986), wherein
the CSFs are divided into classes according to occupation schemes, and each scheme
is then treated with the indirect approach.

It may be desirable for the molecular orbitals (MOs) used to construct the bra
and ket to be different, in case these two states have different physical natures for
example, one might be a Rydberg state and another a valence state. In this case, the
two sets of orbitals can be made biorthogonal. The use of such corresponding
orbitals (King et al. 1967) with identical core orbitals (doubly occupied space in all
configurations) does not appreciably complicate matrix element evaluation for the
case of CASSCF (or full CI, FCI) wavefunctions (Lengsfield et al. 1981). It is
possible to use two separately and fully optimized orbital sets for the RAS SCF
(RASSCF) generalization of CASSCF without too much extra work (Malmqvist
and Roos 1989), again using biorthogonal orbitals. General CI states should be
limited to a common set of orbitals in order to avoid the great increase in time
needed to deal with non-orthogonal orbitals.

The Breit–Pauli SOC defined in equation (5) contains one- and two-electron
terms. In most cases, the contributions due to the one- and two-electron SOC have
opposite sign. An exception was found by Fedorov et al. (2001a) in the A 2�u state of
Oþ

2 , where both contributions are small and there is a region of the internuclear
distance in which both have the same sign. In addition, because of the local nature of
the operator and the explicit dependence of the one-electron operator (1E) on the
nuclear charges, the one-electron contribution to SOC tends to grow rapidly with the
nuclear charge, whereas the two-electron part (2E) grows much more slowly, owing
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to increased electron density in the regions close to the nuclei. The computational
expense of evaluating these two operators is considerably different, by one order of
magnitude. As discussed in the previous section, the Zeff approach permits skipping
the 2E term entirely, but the introduction of these parameters does not permit
quantitative accuracy to be obtained. Nonetheless, the cost of evaluating the 2E term
exactly has motivated the development of approaches wherein the 2E term is
approximated. One such method is the mean field approximation of Hess et al.
(1996), in which all multicentre two-electron integral terms are omitted.

By neglecting the most time-consuming active–active two-electron contribution,
one obtains all of the one-electron and most of the two-electron contributions. This
method is known as the partial two-electron method (P2E). Here only the basic idea
is summarized, as the explicit formulae for all contributions can be found in Fedorov
and Gordon (2000). A matrix element of the two-electron part of the SOC
Hamiltonian between two Slater determinants I and J differing by two spin-orbitals
� and 
 can be written as:

I �ð Þ
��H2e

SO

��J 
ð Þ

 �

¼
XN
�¼1

��
��h2eSO���

 �

þ ��
��h2eSO��
�
 ��

� ��
��h2eSO��
�
 �

� ��
��h2eSO���

 ��

, ð20Þ

where the sum runs over all N electrons (occupied spin-orbitals). Note that there are
two terms for both Coulomb-like and exchange-like terms. This comes from the fact
that the two-particle SOC Hamiltonian HSO does not possess permutation symmetry
between particles 1 and 2, unlike the Coulomb operator. The first Coulomb-like term
vanishes for real-valued orbitals, owing to the differential operator over the
coordinates of electron 1 (that appears with � as bra and ket) in h2eSO (compare
h f jrj f i ¼ �h f jrj f i� ¼ 0 for real-valued functions f ). The sum over all electrons
consists of two parts, over core orbitals and over active orbitals. The former is
retained in the P2E contribution, and can be efficiently summed algebraically, since
the occupation number of each core orbital is 2 (during the summation the spin
integration is also performed, reducing the matrix element to orbitals). Similar
formulae can be derived for the case of determinants I and J, which are identical or
differ by two orbitals. P2E omits the considerably more expensive sum over active
orbitals.

The partial two-electron method in practice requires little more resources than
the one-electron method, for the following reasons:

(1) the number of determinant pairs to be considered is the same as for the
one-electron method (at most one discoincidence allowed);

(2) the four-index integral transformation can be done with the expense of a
two-index transformation;

(3) there is no need to store four-index two-electron integrals in the MO basis
in memory.

Additional expenses include having to calculate two-electron integrals in the
atomic orbital basis. These can be stored on disk while being calculated and read
while doing the four-index transformation. This does not require a noticeable
amount of memory, although, if available, larger buffers can be used to speed up
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the calculation. These expenses (integrals and transformation) are usually insigni-

ficant, especially when compared with the expense of the matrix element calculation

for a large CI.

Several numerical examples (Fedorov and Gordon 2000) serve to illustrate the

relative magnitudes of one- and two-electron terms and demonstrate that the partial

method captures most of the full value of the SOC interaction.

Using a modified all electron basis set WTBS provided by Huzinaga and Miguel

(1990) for X (X¼C, Si, Ge, Sn, Pb) and cc-ptvz for H by Dunning (1989), the SOC

between 1A1 and 3B1 states near their crossing was studied for a series of XH2

molecules. The active space used here is [6/6], i.e. 6 electrons in 6 active orbitals. SO-

CASCI SOC calculations were performed using biorthogonal orbitals with the core

optimized for the singlet. The SO-MRCISD calculations were performed with singlet

orbitals. The results obtained using the larger basis are given in table 5.

Note that at both levels of theory (CASCI, MRCISD), the agreement between

P2E and 2E methods is quite reasonable for all group 14 elements, and the relative

error decreases with increasing charge. The use of MRCISD has only a small effect

relative to the CASCI results.

For Xþ
2 , X¼O, S, Se, Te, SOC was studied at the SO-CASCI level at the CAS

equilibrium geometry. The basis set was 6-21G (Binkley et al. 1980) (X¼O) or

3-21G (Gordon et al. 1982, Dobbs and Hehre 1986) (X¼ S, Se, Te). The experi-

mental value for the 2�3/2g–
2�1/2g splitting in Oþ

2 is 200.2 cm�1 (Fedorov et al. 1999).

The results are presented in table 6.

As for the XH2 species, the partial two-electron method is seen to provide

reasonable accuracy relative to the full 2E method. Tables 5 and 6 indicate that the

first row of the periodic table, where the 1E term is less dominant, may require a full

two-electron treatment if high accuracy is sought.
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Table 5. XH2 (X¼C, Si, Ge, Sn, Pb) resultsa (WTBS basis set).

M1e,
CASCI

MP2e,
CASCI

M2e,
CASCI

M1e,
MRCISD

MP2e,
MRCISD

M2e,
MRCISD

CH2 17.213 7.232 8.540 16.645 6.989 8.218
SiH2 52.50 11.54 12.12 51.13 11.24 11.79
GeH2 260.03 28.03 28.57 264.58 28.80 29.32
SnH2 575.47 40.18 40.56 601.18 42.85 43.23
PbH2 1479.22 65.60 65.92 1585.69 72.06 72.39

aM1e, MP2e, M2e denote absolute values of 1E, P2E and 2E matrix elements in cm�1. The 1e
and 2e matrix elements come with opposite sign.

Table 6. Xþ2 (X¼O, S, Se, Te) CASCI/split basis results.

RX–X (Å) M1e (cm
�1) MP2e (cm

�1) M2e (cm
�1) 2�3/2g–

2�1/2g
a (cm�1)

Oþ2 1.267 125.70 42.98 47.76 155.9
Sþ2 1.869 294.22 54.74 56.51 475.4
Seþ2 2.150 1039.36 107.85 109.24 1860
Teþ2 2.585 1869.04 135.16 136.05 3466

a 2�3/2g–
2�1/2g splitting obtained with the full two-electron SOC, 2|M1e–M2e|.
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SOC plays an important role in the chemistry of many high energy species,
because it is very important for such materials to exhibit sufficiently high barriers to
ensure stability. Such barriers can be greatly lowered as a result of potential energy
curve crossing caused by diabatic interactions such as SOC. The SOC of BH2 and
AlH2 was studied at the minimum energy crossing of the 2A1 and 2B2 surfaces.
All valence electrons are included in the active space ([5/6]). The basis set for BH2 is
aug-cc-pVTZ (Dunning 1989) on both B and H, while for AlH2 it is cc-pVTZ
(Woon and Dunning 1993, Kendall et al. 1992) on Al and aug-cc-pVTZ on H. The
effect of orbitals and CI level on both the separation between the 2A1 and 2B2

surfaces and the SOC with both full and partial two-electron methods can be seen in
table 7.

The results for these molecules demonstrate the general trend that the choice of
orbitals and CI level can have a dramatic impact on the splitting between the two
adiabatic levels. Because two similar numbers are subtracted, high accuracy in both
is required for an accurate difference. At the same time the SOC is not a property
obtained as a difference and thus a much smaller effect of both orbitals and CI level
is observed. Nonetheless, the SOC constants predicted by the P2E method are in
good agreement with the much more resource-consuming full 2E method.

2.6. Spin–orbit coupling with model core potentials
Replacing some of the particle electrons by potentials is a very efficient tool in

quantum chemistry. There are several types of potentials in use today, such as ECPs
(Cundari et al. 1996), model core potentials (MCPs) (Klobukowski et al. 1999) and
AIMPs (Seijo and Barandiaran 1999). The last two types of potentials are in
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Table 7. BH2 and AlH2 CASCI/MRCIS/MRCISD results.

BH2 AlH2

Level Orbitals

2B2–
2A1

(cm�1)
M1e

(cm�1)
MP2e

(cm�1)
M2e

(cm�1)

2B2–
2A1

(cm�1)
M1e

(cm�1)
MP2e

(cm�1)
M2e

(cm�1)

2A1c 300.6 4.841 2.445 2.716 337.5 16.809 4.153 4.323
2B2c �544.6 4.850 2.434 2.714 177.9 16.352 4.060 4.230

CASCI 2A1 7578.5 4.949 2.493 2.792 8373.7 21.914 5.395 5.615
2B2 �3852.7 5.064 2.546 2.841 �5805.3 21.068 5.292 5.520
2A1þ 2B2 �1058.1 4.962 2.505 2.794 387.6 22.120 5.462 5.684

2A1 578.5 4.726 2.380 2.661 1322.2 18.602 4.685 4.897

MRSCI 2B2 �2962.9 4.776 2.394 2.671 �1282.0 19.073 4.803 5.009
2A1þ 2B2 �2599.8 4.780 2.411 2.680 1357.9 19.836 4.960 5.168

2A1 701.9 4.799 2.418 2.680 579.6 19.101 4.806 5.006

MRCISD 2B2 �1499.7 4.815 2.412 2.680 �411.7 18.705 4.733 4.933
2A1þ 2B2 �1160.9 4.797 2.417 2.677 38.2 19.529 4.897 5.097

‘Orbitals’ indicates the sets of molecular orbitals:
	2A1c: two separate MO sets, fully optimized for 2A1, and

2B2 optimized with 2A1 core.
	2B2c: two separate MO sets, 2B2 fully optimized, and 2A1 using the 2B2 core.

All other rows represent use of a single MO set, consisting of the state-averaged 2A1þ 2B2

(50%þ 50%) orbital set.
2B2–

2A1 refers to adiabatic separation between the two states.
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principle capable of retaining the full, accurate nodal structure of the valence

orbitals. On the other hand, it is well known that ECPs do not retain proper nodal

structure and thus are not very efficient for computing SOC directly. Nonetheless,

several methods are available: the effective charge approach (section 2.4), effective

one-electron SO ECPs generated along with spin-free ECPs (Pacios and Christiansen

1985) or calculating the SO integrals in an all electron basis set and transforming

them to be used with ECPs (Marian and Wahlgren 1996). Similar methods exist for

AIMPs (Seijo 1995).

As shown in section 2.5, a matrix element of the SOC Hamiltonian between a

pair of Slater determinants has three contributions: one electron (active–active), two

electron (core–active) and two electron (active–active). In the case of MCPs, the

active–active contributions can be computed in exactly the same way as for the AE

case. However, core–active contributions are split into two parts, as there are two

types of core orbitals: (a) the outer core orbitals that are explicitly kept in the MCP

calculations (filled valence or semi-core orbitals ) and (b) the core orbitals that were

replaced by a potential (MCP core). It is the latter type that that contributes most to

the two-electron SOC.The MCPs explicitly include core orbitals in the definition of

the potential itself, via the projection operator (Klobukowski et al. 1999); therefore,

these exact atomic core orbitals may be utilized to obtain the major part of the

core–active two-electron SOC (in fact, of the total two-electron SOC). Thus the

core–active terms split into ‘valence core–active’ and ‘MCP core–active’. Explicit

formulae for the former term are given by Fedorov and Gordon (2000) and for the

latter term by Fedorov and Klobukowski (2002). The partial two-electron method

can be used, neglecting two-electron active–active contributions. Then one has to

compute effectively a one-electron SOC, containing the active–active one-electron

and core–active two-electron terms summed over the doubly occupied core. The two-

electron terms are obtained from the MCP core and valence orbitals directly,

without need for either transformation of the all electron integrals or using effective

charges, as the MCP orbitals provide very good nodal structure and rnh i expectation

values. In order to improve the efficiency of the calculations, a one-centre

approximation can be employed; it works very well in general as assessed by Walker

and Richards (1970) and may be expected to work even better for the MCP

core orbitals that are atomic like. High atomic symmetry (enforced by keeping

only one-centre integrals) makes the computation of SOC integrals very efficient, as

one-electron SOC integrals A�
 are zero by symmetry if

(a) both � and � are s functions,

(b) � or � are of different parity and

(c) angular momenta of � and � differ by more than unity

As a consequence of (a), (b) and (c), the integrals also vanish when either � or 
 is an
s function, and as a consequence of (b) and (c) the same is true whenever � and 

have different angular momenta.

To demonstrate that the MCP SOC very well reproduces all electron SOC, some

results by Fedorov and Klobukowski (2002) are presented in table 8. These

calculations present an extension of the previously published study of one-electron

SOC by Krause and Klobukowski (1996). The MCPs used remove all core electrons

and the number of non-core atomic orbitals in the all electron and MCP cases are
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exactly the same. The matrix elements are those for the largest MS values of the
corresponding multiplicities, and the imaginary unit i is omitted.

In calculations on atoms X (X¼P, As and Sb), the active space consisted of four
orbitals (s and p), and the 2Pu,

2Du and 4Su states were coupled by SO-MCQDPT
(a method to be described in section 2.7). In the calculations of the corresponding
hydrides XH (at the experimental geometry) the active space consisted of five
orbitals (s and p on X and s on H), and their 3��, 1� and 1�þ states were coupled
using SO-MCQDPT. In calculations of diatomic molecular ions Xþ

2 (at the CASSCF
optimized geometry) the active space consisted of eight orbitals (s and p on X) and
only the 2�u state was included in SO-MCQDPT. The one-centre approximation to
both one- and two-electron SOC integrals as well as the partial two-electron method
(P2E) are used throughout.

The slightly larger relative discrepancy in the case of XH comes in part from the
fact that the splitting is a result of coupling between the 3�� and other states so the
accuracy of the separation between the adiabatic states comes into play. Both sets of
computational results differ from the experimental values; undoubtedly better
polarization space and the explicit treatment of the scalar relativistic effects which
were omitted to facilitate comparison between the all electron and MCP results
may improve the agreement.

2.7. Dynamic correlation and spin–orbit coupling
Electron correlation can affect SOC coupling in several ways. Firstly, SOC is zero

for single configuration real-valued wavefunctions, so one can say that the SOC
interaction arises only when electron correlation is included (assuming an approach
where SOC is not included in the SCF process). Secondly, electron correlation affects
the spacing of the ‘LS’ levels, namely the diagonal of the SOC matrix, and thus can
shift its eigenvalues. Very often this is the major effect of dynamic correlation on
SOC. Thirdly, electron correlation has a direct effect on the off-diagonal SOC matrix
elements. In most cases, however, this direct effect of dynamic correlation is small,
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Table 8. SO splittings in cm�1 for atoms (X), hydrides (XH) and diatomics (Xþ2 ) (X¼P, As,
Sb). Theoretical values were obtained within one-centre and partial two-electron
approximations. Uncertain experimental values are given in parentheses.

Splitting Method P As Sb

X 2D3/2u and
2D5/2u SO-MCQDPT/AE 13.32 254.1 1064.2

X 2D3/2u and
2D5/2u SO-MCQDPT/MCP 12.91 251.2 1079.4

X 2D3/2u and
2D5/2u Experimenta 15.61 322.1 1342.0

XH 0þ(3��) and 1(3��) SO-MCQDPT/AE 2.883 81.43 421.4

XH 0þ(3��) and 1(3��) SO-MCQDPT/MCP 3.023 81.39 423.2

XH 0þ(3��) and 1(3��) Experimentb 117.6–118 655–660

Xþ2
2�1/2u and

2�3/2u SO-MCQDPT/AE 227.6 1162.2 2449.3

Xþ2
2�1/2u and

2�3/2u SO-MCQDPT/MCP 229.7 1158.3 2464.3

Xþ2
2�1/2u and

2�3/2u Experimentc (260)

aMoore (1949)
b Lindgren (1975), Dixon and Lamberton (1968), Bollmark and Lindgren (1974).
cHuber and Herzberg (1979).

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
2
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



owing to the local (atomic-like) nature of the SOC interaction that makes

contributions from chemically active (that is, those having fractional occupations)

orbitals rather small. The major part of the direct dynamic electron, correlation

effect on SOC usually comes from core correlation and, to a smaller degree, the one-

electron active orbital contribution. Most basis sets are developed by focusing on the

valence electrons, and most correlation methods are designed to recover the valence

correlation. Thus accurate calculations of SOC may require basis sets suitable for

core correlation. Nicklass et al. (2000) did a careful study of basis set effects on SOC

in halogens.

Spin-free dynamic correlation effects contribute to the total energy, and, if only one

state is considered, they do not affect, for example, the splitting between the 2�3/2

and 2�1/2 components of a 2� state (they are relevant to determining the minimum

energy geometry, however). In contrast, dynamic correlation effects due to SOC

directly affect the splitting.

In some cases dynamic correlation dramatically changes the active one- and two-

electron contributions. An example was found by Fedorov et al. (2002) where the

SOC interaction in Oþ
2 was very sensitive to the electron correlation level, with

CASCI, MRCIS, truncated, contracted and full MRCISD giving very different

answers. Only CASCI and the full MRCISD (Fedorov, unpublished results) gave

very good agreement with experiment, the former because of fortuitous error

cancellation. It can be expected that for very heavy atoms electron correlation does

have a large direct effect on SOC, through core correlation and the large magnitude

of the SOC interaction. Usually, however, dynamic correlation has a relatively small

effect on SOC, provided that near degeneracy (‘non-dynamic’) correlation (at the

CASSCF level) is properly accounted for. Numerical examples are given in section

2.5 in tables 5 and 7. It is interesting to observe that the dynamic correlation effect on

SOC in table 5 (comparing M1e for CASCI and MRCISD) varies from 3.4% (C),

2.7% (Si), 1.7% (Ge), 4.3% (Sn) to 6.7% (Pb), going through a minimum at Ge,

consistent with the above general arguments.

The indirect effect of electron correlation through the ‘LS’ term splittings is

usually very important. A recently developed method, SO-MCQDPT (Fedorov and

Finley 2001) efficiently incorporates all of the above-described effects of dynamic

correlation. Through appropriately made approximations (treating the two-electron

SOC only at the CASCI level and keeping only terms linear in SOC), it is possible to

compute SOC having to deal with only one- and two-body terms in the perturbation

treatment. Thus the spin-dependent part becomes much less resource demanding

compared with the spin-free MCQDPT. In the recent work by Fedorov et al. (2003),

SO-MCQDPT was successfully applied to U and UF that have complicated spectra

because of partially filled f shells.

As illustrated by applications presented in section 3, SO-MCQDPT is capable of

handling quite large systems. For systems containing a large number of nearly

degenerate states, such as heavy atoms, one usually includes a few more states than

one is primarily interested in. This forms a ‘buffer’ zone allowing the states of

primary interest to interact with all important buffer states, which neglects only the

effect of the even higher states omitted on the buffer states. The complicated spec-

trum of the Os atom was described with an average accuracy of about 1000 cm�1 for

most of the states presented in table 9, except for the highest ones, because of

the limited number of states included into SO-MCQDPT.
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3. Applications

3.1. Diatomic molecules
Main group monohydrides were employed to fit the effective nuclear charges for

main group elements, at the MCSCF/SBKJC(d,p) level of theory (Koseki et al.
1995). The percentage differences from experiment of the SO splittings in their lowest
2� and 3� states are plotted in figure 3. The 2� state is split into 2�1/2 and 2�3/2

levels, and its SO constant is defined as the energy gap between these substates,
where the z components of the total angular momentum O are 1/2 and 3/2
respectively. Similarly, the levels 3�0,

3�1 and
3�2, are produced from the 3� state.

In this case, the energy gaps between 3�0 and 3�1 and between 3�1 and 3�2 are
defined as the SO constants. These two are the same value if only the original 3�
state is included in an SO computation, but interactions with other electronic states
make these two gaps slightly different and also lead to a slight splitting of the 3�0

into two substates, 3�0þ and 3�0� (L doubling). In figure 3, the average values of the
energy gaps are used to derive the percentage differences.

The calculated results for hydrides of group 13–17 elements agree with the
experimental data to within 20%. The fitting to experimental data consisted of linear
relationships of the form Zeff¼ fmZ, with different constants used for each row m in
determining the scaling factor fm¼ amþbmn, where n is the number of valence
electrons and bm is very small compared with am. Since the same scale factor fm is
used for an entire row, the fit for any one element is not exact. Of course, the good
agreement with experiment should be ascribed to these monohydrides being used
to determine the Zeff values. Unfortunately, errors of more than 50% are observed
for alkali earth hydrides. Alkali earth elements have closed-shell ns orbitals, so that
the lowest 2� state of their hydrides is an electronically excited state. No experi-
mental datum has been found so far for excited states of alkali monohydrides and/or
their anions. Therefore, in figure 3, the Zeff results for alkali hydrides are compared
with all electron results obtained using the RESC approximation and the full Breit–
Pauli Hamiltonian in the SOC calculations, excluding LiH anion because of the
quite small splitting in its lowest 2� state. The Zeff approximation apparently
underestimates the splittings in alkali hydrides and/or their anions. Such a
discrepancy in alkali and alkali earth hydrides suggest that extensive effects of

D. G. Fedorov et al.578

Table 9. Low lying levels of Os atom, in cm�1.

J Label SO-MCQDPT Experimenta

4 a5D 0 0
2 a5D 2743.8 2740.49
3 a5D 4098.4 4159.32
5 a5F 6238.1 5143.92
1 a5D 5894.2 5766.14
0 a5D 6657.4 6092.79
4 a5F 9810.7 8742.83
2 a5F 11635.7 10165.98
4 a3F 13185.6 11030.58
3 a5F 12494.5 11378.00
2 a3F 14347.9 12774.38
1 a5F 15160.1 13020.07

aMoore (1949).
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dynamic correlation should be considered in electronically excited states of
molecules. In fact, the second-order CI wavefunctions give slightly better results
for the � states in alkali and alkali earth hydrides (Koseki, unpublished).

Koseki et al. (1995) used the Zeff values determined to fit monohydride experi-
mental data for many ground and excited states of non-hydride diatomics. As shown
in figure 4, an error of less than 30% is observed in 92 of 106 states (85%), although
a few (not shown in the figure), especially electronically excited states, have an error
larger than 100%. Excluding the alkali earths, only 11 electronic states out of
96 considered have errors greater than 10%. The larger errors occurred for Cþ

2 ,
AlS, SeC, AlI, GaI, InI, Br2, MgCl, TeOþ, TeCl and TeBr, and Koseki et al.
(1995) discussed possible sources and solutions for these cases with larger errors.
Thus, as long as energetically low lying states are considered, the Zeff approxima-
tion is applicable to the investigation of SO effects in molecules in a qualitative
manner.

Koseki et al. (2001b) recently reported the relativistic potential energy curves of
Group 4 hydrides, namely TiH, ZrH and HfH. Two methods of calculation were
employed in this investigation: one is the Zeff method in which second-order CI
based on MCSCF orbitals using SBKJC(f,p) basis sets is used to construct SOC
matrices. The other method employs an all electron basis set MIDI (Huzinaga et al.
1984), augmented by three sets of p functions for the both transition element and
hydrogen and by one set of f functions for transition element, instead of the
SBKJC(f,p) basis set. In this second approach the RESC approximation is also
used and the full Breit–Pauli Hamiltonian is employed in the construction of SO
matrix elements. This method is referred to as ‘AE’ in the following discussion.
The AE results were used as reference data for discussing the applicability of the
Zeff approximation.
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Figure 3. Percentage difference between the calculated energy splittings and the
corresponding experimental ones in main group monohydrides, as a function of
the number of valence electrons (n) on the main group atom, e.g. n¼ 2 corresponds
to Be–Ba hydrides.
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Koseki et al. (2003) have just finished similar calculations of relativistic potential
energy curves of group 3 and 5 hydrides: ScH, YH, LaH and VH, NbH, TaH. In
both sets of calculations, the MCSCF active space includes the nd and (nþ1)sp
orbitals of the transition elements and the 1s orbital of hydrogen, and the second-
order CI includes single and double excitations into all external orbitals in the
group 3 and 4 hydrides and the lowest 13 external orbitals in the group 5 hydrides
in order to keep computations practical. Table 10 summarizes the dissociation
energies, equilibrium internuclear distances, vibrational frequencies, anharmonicities
and rotational constants of the ground states in these hydrides.

The ground state in the group 3 hydrides (ScH, YH and LaH) is 1�þ without
SOC effects. The SOC of this state leads to only one level 1�þ

0 (O¼ 0þ), and since
there is no other state close in energy, it remains the ground state. The Zeff

dissociation energies included in Table 10 are 10–20% smaller than the correspond-
ing AE ones, but the equilibrium internuclear distances are in good agreement with
each other, as well as with available RECP results (Balasubramanian 1997). Since the
MIDI basis set is unavailable for the La atom, only the Zeff calculation has been
performed for LaH. The Zeff equilibrium distance of LaH is in good agreement with
the relativistic MP2 results (Laerdahl et al. 1998) and experiment (Ram and Bernath
1996a).

Turning to group 4, both the Zeff and the AE results show that TiH and ZrH
have 4� and 2� as their ground states without SOC effects respectively but that these
two states are close together (Koseki et al. 2001b). On the other hand, HfH definitely
has 2� as its ground state. When the SOC effects are considered, a 4� state is split
into four doubly degenerate levels, 4�3/2,

4�5/2,
4�7/2 and 4�9/2, while the doubly

degenerate levels 2�3/2 and 2�5/2 originate from the 2� state. The ground state is
apparently 2�3/2 in HfH and 4�3/2 in TiH. On the other hand, the 2�3/2 and

4�3/2 are
close in energy to each other in ZrH, but our calculations show that the ground state
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Figure 4. Percentage difference between the calculated energy splittings and the corre-
sponding experimental ones in main group diatomic molecules (non-hydrides).
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in ZrH is 2�3/2 which has 93% 2� character, in agreement with several studies
reported previously (see references in Koseki et al. (2001b)). At any rate, it is true
that the ground state has O¼ 3/2 for all group 4 hydrides, even though their Russell–
Saunders designations are different. On the basis of these results, it can be said that

Spin–orbit coupling in molecules 581

Table 10. Dissociation energies, equilibrium internuclear distances, vibrational frequencies,
anharmonicities and rotational constants of the ground states in group 3, 4 and 5
hydrides.

Molecule State Method De Re !e !e�e Be �

ScH O¼ 0 ECP 15653 1.8029 1564 26.33 5.364 1.3337
AE 20596 1.8147 1549 15.78 5.281 1.0801
Difference (%) �24 �1 1 67 2 23
Experimenta 1.775 1547

YH O¼ 0 ECP 21240 1.9574 1496 21.08 4.486 1.3338
AE 24387 1.9560 1491 16.94 4.490 1.2317
Difference (%) �13 0 0 24 �0 8
Experimentb 1.923 1530

LaH O¼ 0 ECP 19316 2.0805 1428 21.02 3.956 2.244
Experimentc 2.032

TiH O¼ 3/2 ECP 14390 1.8299 1505 25.40 5.201 2.0856
AE 15558 1.8162 1266 �4.78 5.280 1.8674
Difference (%) �8 1 19 �1 12
Experimentd 15809 1385

ZrH O¼ 3/2 ECP 17352 1.8589 1635 34.84 4.988 0.8644
AE 19760 1.8599 1622 21.93 4.978 0.8841
Difference (%) �12 �0 1 59 0 �2

HfH O¼ 3/2 ECP 19284 1.8623 1646 25.64 4.935 0.7515
AE 23442 1.8688 1632 17.97 4.901 0.9001
Difference (%) �18 �0 1 43 1 �17
Experimente 1.831

VH O¼ 0 ECP 13967 1.7742 1629 31.21 5.576 1.7064
AE 14891 1.7830 1575 25.05 5.473 1.8124
Difference (%) �6 �0 3 25 2 �6
Experimentf 17173

NbH O¼ 0 ECP 18059 1.8221 1588 23.12 5.180 2.4694
Dsp AE 19616 1.8304 1568 19.52 5.107 2.3558

Difference (%) �8 �0 1 18 1 5

NbH O¼ 0 ECP 18972 1.8372 1612 23.66 5.111 2.6786
dsds AE 20676 1.8484 1513 14.67 5.025 2.5187

Difference (%) �8 �1 7 61 2 6

TaH O¼ 2 ECP 16124 1.7798 1751 25.40 5.405 1.0369
AE 19846 1.7621 1671 11.38 5.513 1.2140
Difference (%) �19 1 5 123 �2 �15

aRam and Bernath (1996b).
bRam and Bernath (1994b).
cRam and Bernath (1996a).
dDe, Barone and Adamo (1997); !e, Chertihin and Andrews (1994).
eRam and Bernath (1994a).
f Barone and Adamo (1997).
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the Zeff dissociation energies of the ground states are underestimated by about 3000–

4000 cm�1; the SBKJC basis set seems not flexible enough to provide a quantitatively

correct description of the bonding character in these monohydrides. On the other

hand, the AE method provides a rather good prediction of the dissociation energies

(see references in Koseki et al. (2001b)). The equilibrium bond distances were

overestimated using both methods by 0.01–0.02 Å in comparison with the previous

theoretical and experimental results.

Next, consider the group 5 hydrides. The ground state at the equilibrium

internuclear distance is predicted to be 5� in VH and NbH and 3� in TaH without

the SOC effects. The 5� state is split into two non-degenerate levels, 5�0þ and 5�0�

(after L doubling), and four doubly degenerate levels, 5�1,
5�2,

5�3 and 5�4 by SOC

effects. As a result, the ground state is 5�0þ in VH and NbH in the relativistic

scheme. In TaH, SOC should split the 3� state into 3�2,
3�3 and

3�4. Although the

lowest 5� state is distinctly higher in energy than the lowest 3� state at both levels of

computation without SOC, the introduction of the SOC effects leads to a small

energy gap between the lowest 3�2 and
5�0þ states (321 (Zeff) and 562 (AE) cm�1),

and thus we predict that the ground state is 3�2 by a small margin. Cheng and

Balasubramanian (1991) also reported a small energy gap between these states

(326 cm�1), but they concluded that 5�0þ is lower in energy than 3�2. Calculations

with improved accuracy are needed to settle this point. The Zeff dissociation energy

of the ground state is smaller than the AE value by less than 10% in VH and NbH

and by about 20% in TaH. The equilibrium internuclear distance and vibrational

frequency are in good agreement with each other in all group 5 hydrides. The AE

method reproduces the RECP (Cheng and Balasubramanian 1991) and model

potential (Wittborn and Wahlgren 1995) results reported previously to within 10%.

In the study of group 5 hydrides, one serious discrepancy appears in the

dissociation limit: both Zeff and AE methods indicate that the ground state is 4F

arising from a (4d)3(5s)2 configuration in all group 5 elements. However, according

to Moore’s experimental reports (1949, 1952, 1958), although the ground state is 4F

in V and Ta atoms, in Nb it is 6D arising from the configuration (4d)4(5s)1. The

energy difference between the lowest 4F3/2 and
6D1/2 states is reported experimentally

as 1143 cm�1, but this difference is computed to be �440 cm�1 in our investigation

(Koseki et al. 2003). This discrepancy in the dissociation limit of NbH can be

removed by using an MCSCF active space which includes two sets of d and s orbitals

for the transition element (with no active p orbital) and a 1s orbital of hydrogen.

These results are labelled dsds in table 10 and suggest that radial d correlation may

be quite important. The choice between including (nþ1)p or (nþ1)d orbitals on the

transition metal in the active space is made the basis on of the competition between

the importance of the correlation of the nd orbital and the coupling of the (nþ1)p

excited states. Nevertheless, the chemical properties of the ground state in NbH are

reasonable at the equilibrium internuclear distance. The details of these results will

be discussed in a forthcoming paper (Koseki et al. 2003)

Figure 5 plots the dissociation energies and equilibrium internuclear distances

against the periodic row of transition elements in each transition row, where the AE

values for LaH is assumed to be the same as the Zeff ones. The equilibrium

internuclear distances of group 3 hydrides monotonically increase across the

row, while those for group 4 are almost constant and no clear trend is observed

for group 5. The behaviour of the group 5 hydrides could be explained by lanthanide

D. G. Fedorov et al.582
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contraction, since LaH has no 4f electron and 4f orbitals are completely filled in HfH
and TaH. The dissociation energies have no obvious trend.

SOC plays an important role in some excited states of group 11 hydrides. These
molecules are frequently used to illustrate scalar relativistic effects, and several
papers provide examples. The hydrides of Ag and Au were extensively studied by
Witek et al. (2000), and recently a paper describing an unusual potential curve of the
first excited state of AgH was published by Witek et al. (2002). For these molecules
the ground state is 1�þ and the effects of SOC manifest themselves as avoided
crossings of some excited states and as splitting of atomic-like states at large
separation.

3.2. Vibrational dependence of spin–orbit coupling constant in diatomics
The SOC constant (SOCC) is usually defined for linear molecules (e.g. Hess et al.

1995) as

A� ¼
1

LS
C�

N
Ce

��HSO
��C�

N
Ce

D E
, ð21Þ

where L and � are eigenvalues of Lz and Sz respectively; � is the vibrational level and
subscripts ‘N’ and ‘e’ denote nuclear and electronic parts of the wavefunction
respectively (in the adiabatic approximation). The SOCC is an averaged measure
of the SOC for a given adiabatic term. It reflects the dependence of the SOC splitting
on the molecular geometry. Even for light molecules the SOCC varies significantly
with distance, representing the change of molecular orbitals relative to atomic ones
at the infinite separation.

In order to account for the coupling of several states, one can construct a
Hamiltonian matrix in the basis of adiabatic states, including all interactions of
interest into the Hamiltonian. In the case of SOC, one can construct the following
matrix (Fedorov et al. 2001a): hC�

NC
i
ejĤHjC�0

NC
i0

e i, where i and i0 denote adiabatic
levels. If the potential energy surface is close to a Morse potential shape, which is
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Figure 5. Comparison of (a) dissociation energies and (b) equilibrium internuclear distances.
The full and broken lines are for the Zeff and all electron results respectively. Circles:
group 3 hydrides. Squares: group 4 hydrides. Triangles: group 5 hydrides.
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often the case, then it is convenient to fit the surface to a Morse potential and obtain
its eigenfunctions C�

N analytically. Coupling between adiabatic levels can also be
fitted to an appropriate function. While the exact shape for dependence of SOC
on internuclear distance R, AðRÞ 	 hCeðRÞjHSOjCeðRÞi, is unknown, for the
doublet and quartet �u states of COþ and Oþ

2 it was found by Fedorov et al.
(1999, 2001a) to behave as h tanh s R� R0ð Þ½ � þ A0 and for the X 2�g state of Oþ

2 as
h exp �s R� R0ð Þ

2
� �

þ A0. Another approach is to compute the nuclear wavefunction
and coupling on a grid and then to integrate over nuclear coordinates numerically.
In this case the discrete variable representation (DVR) technique described in Witek
et al. (2002) is very useful for accurate numerical computation of a wavefunction,
given a potential.

Experimentally, the vibrational dependence of the SOCC is well known and data
with accuracy on the order of 1 cm�1 or better are available for many molecules.
Coupling between vibrational levels is also observed experimentally and is seen as
perturbations on the plots of the SOCC versus vibrational number �. The nature of
such interactions can be understood with the help of theory. By diagonalizing the
Hamiltonian in equation (21), one can easily determine what states cause sudden
jumps in the SOCC. This, however, represents a rather challenging problem for
ab initio methods, since the interactions are very small (for light molecules) and for a
quantitatively correct analysis vibrational levels and their coupling should be
accurate on the order of several cm�1 or better. While the coupling can be obtained
reasonably accurately at the present level of computational capabilities, the vibra-
tional levels that come into play through the spin-free part of the Hamiltonian (which
is diagonal in the basis of adiabatic levels) are a much more challenging problem.

For illustration, the SOCCs for several states in Oþ
2 and COþ can be considered,

following the study of A 2�3/2,1/2u (COþ), X 2�3/2,1/2g (Oþ
2 ) by Fedorov et al.

(1999) and A 2�3/2,1/2u (Oþ
2 ), a 4�5/2,3/2,1/2,�1/2u (Oþ

2 ) by Fedorov et al. (2001a).
The potential energy curves computed with the MRCISD method based on an
all valence CAS (8 orbitals) agreed with experiment within 0.0005–0.005 Å in
equilibrium distances, within 5–44 cm�1 in harmonic and 0.15–2.4 cm�1 in anhar-
monic frequencies.

SOCC plots are presented in figure 6. It can be seen that the shape of the
dependence of the SOCC on the vibrational number is well reproduced for all cases
studied. An approach based on single-point calculations at the experimentally
determined averaged distances R assigned to each level � starts to depart from
experiment for large values of � (figures 6(a) and 6(b)). Unsatisfactory performance
of this approach can be explained by much delocalized wavefunction C�

N that does
not correspond to the density equal to the Dirac delta function centred at R�. This is
caused by the increase in anharmonicity as the vibrational quantum number
increases. Not much improvement is gained by using experimental values of Morse
potential parameters (figures 6(c) and 6(d)). In the latter case, the agreement is quite
good at the ab initio level and in the former case it is the values of A(R) that need
improvement. In the A 2�u state SOC was found to be very sensitive to the level of
electron correlation. The relatively low level results given by CAS agree with
experiment quite well owing to error cancellation. Further improvement of electron
correlation to MRCIS and contracted MRCISD levels actually made the agreement
worse and only full uncontracted MRCISD was able to give accurate values.

Perturbations (sudden jumps) seen in figures 6(a), 6(c) and 6(d) are due to
coupling to other states. Jumps occur if two vibrational levels are very close to each
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other (splitting is comparable with the interaction between the two). In the study by
Fedorov et al. (2001a) such coupling of A 2�u, a

4�u and
2�þ

u in Oþ
2 was conducted.

The 2�þ
u state crosses the other two and vibrational levels corresponding to the

crossing point are perturbed. From both numerical and theoretical arguments it was
demonstrated that experimentally seen perturbations in A 2�u, a

4�u are due to the
2�þ

u state. Quantitative theoretical predictions of the perturbed levels were not in
good accord with experiment. Anharmonic frequencies are usually relatively more
difficult to reproduce theoretically than harmonic frequencies; thus, the larger the
vibrational number �, the greater the error in vibrational levels. For computations
requiring such high accuracy (several cm�1 or better), other minor interactions
become important, such as spin–spin coupling and various effects of rotational
movement. Using the adiabatic approximation itself can introduce a comparable
error. Thus we see that while ab initio values of SOCCs are in good quantitative
agreement with experiment, perturbations caused by other states are still a
challenging problem.

3.3. Spin–orbit coupling and non-adiabatic transitions in polyatomic molecules
One of the important applications of SOC is to study non-adiabatic transitions.

It is quite common for ground and especially excited state potential energy surfaces
of molecules to cross. Such crossings, known as conical intersections (Yarkony 2001)
can dramatically alter the stability of molecules owing to the possibility of crossing
from one state to another. If such crossings are overlooked then low barrier
transitions can be missed and an incorrect chemical picture will arise. The
probability of transition can be computed with the semiclassical Landau–Zener
model (Nakamura 1987), that is on the basis of the assumptions of linear diabatic
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Figure 6. Vibrational dependence of SOCC in (a) COþ (A 2�), (b) Oþ2 (X 2�g), (c) Oþ2
(A 2�u), (d ) O

þ
2 (A 4�u). ‘hRi‘ refers to computing ab initio SOC at the geometry given

by the experimental value of h�� jRj��i. ‘MRCISD/exp. pot.’ refers to using
experimental values for the Morse potential with ab initio values of SOC. ‘Vibronic’
refers to the level coupling model, described in the text.
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terms and constant diabatic coupling. The matrix element that appears in the
probability should properly take spin degeneracy into account. This is easily done
using the normalized matrix element CS,S0 between two states with S and S0 (S(Sþ1)
are eigenvalues of S2) introduced by Fedorov (1999). CS 0S 0 is zero if S and S0 differ by
more than 1 and C is symmetric, i.e. CS,S 0 ¼CS 0,S:

CS,S0 	
XS

MS¼�S

XS0

M0
S
¼�S0

SMS

��ĤHSO
��S0M0

S

D E��� ���2

¼
2minðS,S0Þ þ 1

3
S
��L̂Lx

��S0
D E2

þ S
��L̂Ly

��S0
D E2

þ S
��L̂Lz

��S0
D E2� �

ð22Þ

The Landau–Zener probability of transition between two adiabatic levels i and j is
given by

Pði, jÞ ¼ 1� e�2�ij , �ij ¼ �
Vij

�� ��2
�hhv gi � gj
�� �� ¼ �

CSi ,Sj

ð2minðSi,SjÞ þ 1Þ�hhv gi � gj
�� �� ð23Þ

where g is the adiabatic energy gradient, v is the velocity of the molecule at the
transition point and Vij is a matrix element of a diabatic operator (SOC in this case)
coupling two adiabatic states i and j.

It should be noted that the non-adiabatic state crossing has seams of dimension
3N-7 (3N-6 for linear molecules) and one is usually interested in the minimum energy
crossing point. As an approximation to that point, one can follow the minimum
energy path of the reaction, provided that the geometries of the two states that cross
are not too different. The crossing in general does not possess the properties of a true
transition state (a Hessian with only one imaginary frequency) and thus conventional
transition state searches cannot be used directly.

Matsunaga et al. (1996) applied the Zeff method to the main group triatomic
molecules XH2 (X¼C, Si, Ge, Sn and Pb) in order to obtain the relativistic potential
energy surfaces of the lowest singlet and triplet states. The simple one-dimensional
Landau–Zerner approximation was used to estimate the transition probability of the
ISC at the MEX point along the potential seam between these states. ISC occurs in
CH2 and SiH2 only when the kinetic energy is relatively small, but the transition is
accessible at any kinetic energy in SnH2 and PbH2 owing to the strong SOC and
larger mass. GeH2 belongs to an intermediate case.

In the study of the reaction of Tiþ and ethane, Moc et al. (2000) found that the
reaction starts off in the quartet state and proceeds through a non-adiabatic crossing
to the doublet state through a number of intermediates and transition states to the
final products (TiC2H

þ
4 H2), crossing back to quartet and then again to doublet at

MCQDPT and CCSD(T) levels and there was only one initial crossing at the B3LYP
level. This crossing reduced the value of the reaction barrier from 17.0 to 8.0 kcal
mol�1 (MCQDPT). The normalized matrix element was computed to be 50–55 cm�1,
depending on the method used, and the probability of transition was computed as a
function of temperature. The value at room temperature is 13.4%.

Another application of SOC is to study how the energy levels are affected when
SOC is included. In the study by Ajitha et al. (2002), alkyl and aryl iodide
compounds that have been extensively studied experimentally were investigated
using SO-MCQDPT. In those systems SOC creates two dissociation channels
corresponding to the ground 2P3/2u and excited 2P1/2u states of the iodine atom.
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Thus SOC is the driving force that is behind the branching between the two states.
Going from alkyl to aryl substituents as well as fluorination are of significant
interest. In the SO-MCQDPT study the level structure had previously only been
speculated on the basis of the available experimental data; it was placed on a firmer
theoretical foundation by the ab initio calculations. Reliable experimental excitation
energies available for CH3I and CF3I to several per cent; however, for much of the
presented data there were no experimental data for comparison.

4. Conclusions

It is clear that SOC is ubiquitous among a very broad swath of chemistry physics
and biochemistry and biology. The impact of SOC on chemical and physical
properties includes the following:

. the quantum dynamics of atom–molecule and molecule–molecule reactions;

. the electronic structure of atoms and diatomic molecules, with increasing
impact as the atomic number increases;

. the details of photoionization of small molecules as a function of vibrational
quantum number;

. mechanisms of chemical reactions, especially for species with two or more low
lying electronic states whose relative positions on the energy scale change as a
function of reaction coordinate, a very common occurrence;

. the photochemistry and photobiology of polyatomic and biomolecules.

The ability to predict SCC and related properties reliably clearly depends on the
availability and development of reliable methods. Especially over the past decade,
several methods of varying sophistication have been developed. The degree to which
these methods have been tested is limited, but some clear trends have emerged:

. The Zeff method can provide qualitatively useful results, especially when
adequate all electron basis sets are available. However, in general, the partial
two-electron and similar methods are about as computationally efficient and
more quantitatively reliable.

. A major deficiency is the general lack of adequate atomic basis sets. This
includes all electron basis sets for the heavier elements core-correlated basis
sets for most elements and valence basis sets for effective core potentials and
model potentials. Because most properties of interest to chemists are primarily
manifested in the valence region, most attention by basis set developers has
logically focused on this region of space, with much less attention paid to the
core region that is so critical to accurate predictions of SOC. Similarly, most
ECPs and associated basis sets were developed before there was sufficient
computer hardware to handle extended basis sets, so these ECP basis sets are
generally much too small to provide accurate calculations.

. It is also clear that one needs both an adequate zero-order wavefunction and
an adequate representation of dynamic correlation. The zeroth-order
wavefunction generally needs to be of the multireference type, as exemplified
in the FORS or CASSCF formalism, with an active space that includes
all close lying electronic states. The dynamic correlation then must build
on this zero-order wavefunction via multireference perturbation theory
(e.g. MCQDPT) or singles and doubles multireference CI.
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. The most sophisticated methods for calculating SOC effects, combined with
electronic structure methods that include an adequate treatment of dynamic
correlation, are very computationally demanding with regard to both central
processing unit time and computer resources. Therefore, in order to apply
these methods to polyatomic molecules, the development of more efficient
methodology will be essential. Such approaches will undoubtedly include new
scalable software that takes advantage of massively parallel computers and
more effective multireference methods. There is considerable current activity in
both of these areas, so the prognosis is very encouraging.

Many of the methods to compute SOC in molecules described in this review are
implemented in the publicly available and no-cost suite of quantum chemistry
programs GAMESS (Schmidt et al. 1993).
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